You've been logged out of GDC Vault since the maximum users allowed for this account has been reached. To access Members Only content on GDC Vault, please log out of GDC Vault from the computer which last accessed this account.

Click here to find out about GDC Vault Membership options for more users.

Session Name Forced-Based Anticipatory Collision Avoidance in Crowd Simulations
Speaker(s) Stephen Guy, Ioannis Karamouzas
Company Name(s) University of Minnesota, University of Minnesota
Track / Format AI Summit
Overview As game worlds get bigger and more populated, animating crowds of interacting characters is becoming an increasingly common task in modern computer games. Traditionally, this problem involves both rendering/animating individuals and planning their paths through the dynamic environment. Our focus is on the latter problem of computing 2D trajectories for agents, allowing them to steer towards their goals, while simultaneously avoiding upcoming collisions in an intelligent and realistic-looking fashion. The lecture will first give a brief overview of state-of the-art, velocity-based approaches (e.g., RVO and ORCA) summarizing both their advantages and drawbacks. We will then introduce a new, force-based method for anticipatory collision avoidance that follows directly from our current research in statistically analyzing human trajectories. We will show how this method avoids many of the potential pitfalls of velocity-based approaches, is easy to implement, and can be directly incorporated into existing force-based simulation pipelines.

GDC 2015

Stephen Guy

University of Minnesota

Ioannis Karamouzas

University of Minnesota

free content

AI Summit


UBM Tech