
1

2

3

It’s very easy to end up in a local optimum if you don’t consider cache concerns up
front and choose a data structure which has inherently poor cache behaviour (e.g. a
KD-tree). You can easily end up optimizing for cache behaviour (compressing nodes,
rearranging them in memory), within the constraints of a cache-hostile data
structure. If cache misses are a primary concern, it’s worth trying a data structure
that attacks that problem more directly.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Note: R*-trees and Hilbert R-trees are generally considered the best splitting
techniques w.r.t. query performance for dynamic trees. cR-trees tend to do well too…

25

26

27

28

29

See:
Revisiting R-tree Construction Principles
Sotiris Brakatsoulas, Dieter Pfoser, and Yannis Theodoridis

For more on using k-means as the splitting algorithm, though this paper splits in >2
parts, we don’t need to do that – the incremental refinement fixes up flaws better.

30

31

32

33

34

35

36

37

38

From the very sharp initial drop we should NOT conclude that merely increasing the
branching factor will yield incredible performance benefits, rather we should
conclude that the R-tree algorithm performs poorly at low branching factors. This
makes perfect sense when you think about it, as the condition of the R-tree is largely
determined by the splitting strategy’s ability to perform a “good” split of all the
objects in the subtree at a given node by only dealing with the immediate children.
For very low branching factors (e.g. 4) the immediate children are unlikely to provide
sufficient information about the “shape” of objects under the node. Once we reach
branching factors of 20-24 though, it’s much more likely that the distribution of the
immediate children is a good representation of the overall distribution of objects in
that subtree, which means that a good split of the immediate children is likely to be a
good split of the entire sub tree under the node in question.

The main thing to take home from the graph is the large jump between the curve
with no cache control, and the other curves.

Note the jump of the “All optimizaions” line when you go from 8 to 9 cache lines.
That’s because if you try to issue 9 dcbt’s the CPU will stall for the first 8, meaning it
can’t proceed and work the current node (hiding the fetch latency). This effectively
disables pre-fetching. In the real world there may be other things putting pressure on
memory, so it may be wise to use only 7 or perhaps 6 cache lines to leave some room
for other threads to read form memory.

39

40

41

42

43

44

The function BlockFetch inserts the required number of dcbt calls for a given value
through some recursive template metaprogramming. Same trick works for dcbz128.

45

