Game Developers
Conference’
March 913, 2010

www.GDConf.com

R-trees

Adapting out-of-core techniques
to modern memory architectures

Sebastian Sylvan (ssylvan@rare.co.uk)

Principal Software Engineer, Shared Technology Group, Rare

A neat data structure for spatial
organization: R-trees

A strategy for finding cache-friendly
- alternatives to traditional algorithms
~ Will use the Xbox 360 for specific
+ examples
Mostly applicable to PS3 too (I think! ©)

Game Developers
Conference’
March 913, 2010

— The problem

4 = Current console architectures are...
‘449 “pointer challenged”
» L2 cache miss = 600 cycles!
And that’s on a good day!
o A very common reason for poor
performance
» Can’t “deal with it later”

Cache considerations impact data
structure choices

Must take it into account early, or end up
in local optimum

Game Developers
Conference
March 913, 2010

Basically... Don’t do this:

%
Yials.

)/
5 { E lil
7 P&
2 ;i

37

7 1-: // it
YL A

k.

It’s very easy to end up in a local optimum if you don’t consider cache concerns up
front and choose a data structure which has inherently poor cache behaviour (e.g. a
KD-tree). You can easily end up optimizing for cache behaviour (compressing nodes,
rearranging them in memory), within the constraints of a cache-hostile data
structure. If cache misses are a primary concern, it’s worth trying a data structure
that attacks that problem more directly.

Game Developers
Conference”
arch 9-

~— The Solution

» Code shouldn’t be written as if
Y A memory access was cheap
\ + (because it's not)
(g‘ ®l Q + Treat memory access like disk access
= . Main tool at our disposal: dcbt
¢ s + “Pre-fetch”, whenever possible
+ “Block fetch”, for unavoidable cache misses

+ Pay one cache miss instead of 8!

«~ Opportunities for these rarely occur in the wild
without intentional set up

Game Developers
Conference’
March 913, 2010

www.GDConf.com

History repeats itself

» How do we write code that exposes
opportunities for pre-fetching and
block fetching?

» Database and out-of-core people
have dealt with this problem for

3 several decades!
.. = Their algorithms are tuned to:

~ reduce number of fetches

« deal with large blocks of data at a time

\ « This is exactly what we want!

- Steal their work!

For spatial index structures: R-trees

Game Developers
Conference’
March 913, 2010

— R-trees

+ Essentially just an AABB-tree

But with some specific properties that pay
off...

... and loads of prior work we can steal for
\ the details
= = Nodes are big fixed size blocks of child
AABBs and pointers
AABB for a node stored in its parent
« Makes sense given the access pattern

Some slackness (usually up to 50%)
\ + Reduces frequency of topology changes
.+ Terminology: An "m-n R-tree” means all
| nodes (except root) has between m and
n children

Game Developers
Conference”
March 9-13, 2010

San Francisco, CA
www.GDConf.com

2-3 R-trees

2-3 R-tree as an example, in
practice we want much bigger
nodes (e.g. 16-32 R-trees)

|-

Game Developers
Conference”
March 9-13, 2010

2-3 R-trees

Game Developers
Conference”
March 9-13, 2010

2-3 R-trees

10

Game Developers
Conference”
March 9-13, 2010

2-3 R-trees

Game Developers
Conference”
March 9-13, 2010

San Francisco, CA
www.GDConf.com

2-3 R-trees

12

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

13

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

14

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

15

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

16

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

17

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

18

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, (A
www.GDConf.com

2-3 R-trees

19

Game Develppers

Conference

M
i

13,2010
San Francisco, CA
www.GDConf.com

2-3 R-trees

20

Game Developers
Conference’
March 913, 2010

www.GDConf.com

Main Operations on R-trees

j@ ~ Insert/Delete

Saw insert. Pick leaf, split if overflowing, insert
new node into parent. (keeps it balanced!)
Delete: Remove child from node, fill hole with
last child
Strictly speaking should handle underflow

+« typically by re-inserting all remaining nodes

« In practice, delete is often deferred; only remove

when node is completely empty
~» Range queries (frustum, sphere, AABB etc.)

Fairly standard:

+ Check each child’s AABB against range

« if it intersects, recurse until we're at a leaf

+ If it’s fully outside range, return nothing

« Ifit’s fully in range, return all children with no further
tests

21

ccccccccccc

- R-trees, benefits

» Cache friendly data layout
» No rigid subdivision pattern
+ High branching factor

shorter depth, fewer fetches, more work
within each node

'« Prefetching (breadth-first traversal)

Stack (depth first): current node can change
which node comes next

Queue: We know which node is next - so
prefetch it!

= Many children per node
Unroll tests to hide VMX latency
Hides the pre-fetch latency

Game Developers
Conference’

- R-trees, benefits

» Dynamic objects doable

Even if objects move, the topology
remains valid
« Just need to propagate any AABBs changes to
parent
May eventually end up performing poorly
+ But will still be correct
Defer re-insertions until object has
moved “a lot”

« Adjusting AABBs is much cheaper than a re-
insert

23

wwwwwwwwwwww

R-trees — Insertion

» How to pick which child node to
insert into

~ Seems somewhat irrelevant for
performance!

As long as you do something relatively
sensible

R Splitting seems to have a bigger impact
- = Simple strategy:

Pick the child node which would be
enlarged the least by putting the new
object into it

24

Game Developers
Conference
March 913, 2010

www.GDConf.com

R-trees - Splitting

~ Happens when a node overflows
- Loads of different strategies here...

Linear, Quadratic and Exponential from the
original R-tree paper... Simple, but perform
fairly poorly

Many other techniques... No time to talk
about them all!

~ For static data, can bulk load

Mainly STR or Static/Packed Hilbert R-trees

We’'re mainly concerned with dynamic R-
trees so we won't linger on this...

- Let’s come back to splitting...

Note: R*-trees and Hilbert R-trees are generally considered the best splitting

techniques w.r.t. query performance for dynamic trees. cR-trees tend to do well too...

25

Game Developers
Conference’
March 913, 2010

www.GDConf.com

@

R-trees — Incremental refinement

» Garcia et al.

“On Optimal Node Splitting for R-Trees
Figured out a fast way to do optimal
splitting...

...but query performance boost was small...

“Thus a second contribution is to demonstrate the near
optimality of previous split heuristics”

+ Ouch!
But led to a key insight: ‘research should focus on
global rather than local optimization”

4

\ Y. J. Garcia, M. A. Lopez, and S. T. Leutenegger. On optimal node splitting
N for R-trees. In Proceedings of the 24th International Conference on Very Large
Databases pages 334-344, 1998.

26

R-trees - Incremental refinement

» Non-local, incremental

= Can do this for e.g. 5% of insertions,
or do many iterations whenever we
have time to spare

» Can give better performing trees
than bulk loading!

» Can reshape any R-tree into a well-
formed one

| - If we do this, we can get away with

murder for insertions/splitting!

Game Developers
Conference
March 913, 2010

wwwwwwwwwwww

R-trees - Incremental refinement

«~ Starts at a specific node, n (typically
a leaf)

First, recursively optimize the parent
of n (unless root)

« Helps ensure that we get “"good” siblings for

the next steps

Then try to merge n with an
overlapping sibling

~ Improves space utilization
Else, for each overlapping sibling to
n, take the union of its and n’s
children, and then split that

+ Redistributes child nodes between siblings,
improving overlap, empty space etc.

28

Game Developers
Conference”
March 913, 2010

www.GDConf.com

R-trees - Splitting, part deux

Due to refinement, splitting strategy isn't that crucial
Even if we slightly screw up the first time through, we get
multiple chances to fix it

However, must ensure “diagonal” clusters work well
Incremental refinement algorithm generates these
situations
E.g. Ang/Tan splitting method doesn't handle this well
(splits along coordinate axes)

29

Game Developers
Conference
March 9-13, 2010

www.GDConf.com

R-trees - Splitting, part deux

5 = Split using k-means clustering (k=2)

‘a % 9 Standard clustering algorithm, not just
@S for R-trees

(g{ D) @L Performs well
- > . Simple:

Randomly pick two nodes as "means”

Repeat until means converge:
« Assign each node to the closest mean
« Compute new means for these clusters

See:
Revisiting R-tree Construction Principles
Sotiris Brakatsoulas, Dieter Pfoser, and Yannis Theodoridis

For more on using k-means as the splitting algorithm, though this paper splits in >2
parts, we don’t need to do that — the incremental refinement fixes up flaws better.

30

Game Developers
Conference”
March 9-13, 2010

San Francisco, CA
www.GDConf.com

K-means example...

31

K-means example...

« Pick two seed objects, A and B, at
random...

32

Game Developers
Conference
March 913, 2010

e K-means example...

o 9 : ;
"\a\g @ = Classify objects by closest mean...
AN

2

33

K-means example...

=~ Compute new means...

34

Game Developers
Conference
March 913, 2010

e K-means example...

o 9 : ;
"\a\g @ = Classify objects by closest mean...
AN

2

35

K-means example...

« Compute new means...

36

Game Developers
Conference
March 913, 2010

anF [
www.GDConf.com

K-means example...

« Classify objects by closest mean...

+ Convergence! Done!

37

Game Developers
Conference’
March 913, 2010

www.GDConf.com

R-trees - Splitting, part deux

ﬁj ~ Adapt k-means for AABBs instead of
@ > 8 points

‘3 4\\\ Need to define what “distance” and
“mean” means for AABBs
« Let “distance to mean” be the diagonal of the
minimal AABB that includes both the box and
the mean
~ Gives a reasonable estimate of dissimilarity
+~ Let “mean of a cluster” be the “center of
gravity”

38

Game Developers Frustum Query (16K objects)

Conference
March 913, 201 500

450

+— Prefetch & VMX unrolling

—&—No cache control

—4—Block fetch & VMX unrolling

—a&—Prefetch

Ca—t————— &
—+——+" Sweet spot
20-32 nodes
(5-8 cache lines)

30 40 50 60 70 80 90 100
Branching factor

From the very sharp initial drop we should NOT conclude that merely increasing the
branching factor will yield incredible performance benefits, rather we should
conclude that the R-tree algorithm performs poorly at low branching factors. This
makes perfect sense when you think about it, as the condition of the R-tree is largely
determined by the splitting strategy’s ability to perform a “good” split of all the
objects in the subtree at a given node by only dealing with the immediate children.
For very low branching factors (e.g. 4) the immediate children are unlikely to provide
sufficient information about the “shape” of objects under the node. Once we reach
branching factors of 20-24 though, it’s much more likely that the distribution of the
immediate children is a good representation of the overall distribution of objects in
that subtree, which means that a good split of the immediate children is likely to be a
good split of the entire sub tree under the node in question.

The main thing to take home from the graph is the large jump between the curve
with no cache control, and the other curves.

Note the jump of the “All optimizaions” line when you go from 8 to 9 cache lines.
That’s because if you try to issue 9 dcbt’s the CPU will stall for the first 8, meaning it
can’t proceed and work the current node (hiding the fetch latency). This effectively
disables pre-fetching. In the real world there may be other things putting pressure on
memory, so it may be wise to use only 7 or perhaps 6 cache lines to leave some room
for other threads to read form memory.

39

R-trees summary

~ Fast, block-based, AABB trees

With all the usual benefits of hierarchical
trees

.. = Very cache-friendly
| + SIMD friendly

-+ No “bulk loading” required
& Lots of prior work to exploit

40

Game Developers
Conference’
March 913, 2010

www.GDConf.com

& J
)lA’)@

‘3 &

A Reusable Strategy?

~ Have problems with cache misses?

Has similar been done in an out-of-core
scenario?

Steal it! Replace “disk block” with *"memory
block”

« Use dcbt and dcbz128 on these memory blocks!
~ R-trees: my first attempt at this
Wanted cache-friendly spatial index

Figured it would be block-based, but knew no
details

Deliberately looked up how database people
do it

E I hope this strategy will work again in

the future!

41

Game Developers
Conference
March 913, 2010

www.GDConf.com

Questions?

Y4 .®@ = Contact: ssylvan@rare.co.uk
&

Multidimensional and Metric Data Structures
H. Samet; Morgan Kaufman Publishers, 2006

\ The original paper:
| R-Trees: a Dynamic Index Structure for Spatial Searching
A. Guttman; Proceedings ACM SIGMOD, pp. 47-57, 1984

42

43

Game Developers
Conference”
March 913, 2010

~-- Future work

Compress nodes, reduce memory/cache usage
May lead to too high branching factor?
May be slower due to decompression into VMX vectors...
Node size can be smaller - just fetch several nodes at a
time. This is an advantage over out-of-core techniques.
We only need our blocks to be piecewise contiguous.
Other BVs
Maybe spheres.. Maybe 8-DOP... Maybe have different BVs
at leafs vs nodes?
Implement on GPU
Very small cache. Even more dependent on good cache
behaviour
Each ALU lane could do one AABB, we mazI not need
hacks like “packet tracing” to get good SIMD performance
Spatial joins
Usually not considered a standard tool for game
applications

But this is bread and butter for DB people so it's natural
to come across it if you're reading R-tree literature

Makes many O(n log n) operations O(log2 n)
More benchmarks/comparisons (e.g. hgrid etc.?)

44

Game Developers
Conference’
March 913, 2010

www.GDConf.com

Useful helper function

template<unsigned int N>
Q2 __forceinline void BlockFetchHelper (void* p)
?Qg@{
2 \

BlockFetchHelper<N-1>(p);
__dcbt(CACHE LINE*(N-1), p);

:w:.\ template<>
(; __forceinline void BlockFetchHelper<0>(void* p) {}

¥

| template<typename T>
__forceinline void BlockFetch(T* p)

BlockFetchHelper<sizeof (T) /CACHE LINE>(p);

The function BlockFetch inserts the required number of dcbt calls for a given value
through some recursive template metaprogramming. Same trick works for dcbz128.

