
Zero to Millions:
Building an XLSP
for Gears of War 2

Dan Schoenblum
Senior Engine Programmer
Epic Games
dan.schoenblum@epicgames.com

About Me

 Working in online gaming for over 10
years

 At GameSpy from 1999-2008

 “Powered by GameSpy” technology

 Joined Epic Games early in 2008

 Part of the online team

About Epic Games

 Gears of War Franchise

 Unreal Franchise

 Unreal Engine

 100+ games

Gears of War

 Released November 2006

 Multiple Game of the Year awards

 #1 Xbox LIVE game of 2006

 #2 Xbox LIVE game of 2007

Gears of War 2

 Build a better game

 More visually stunning

 More fun

Gears of War 2

 Build a better game

 More visually stunning

 More fun

 “Bigger, better, and more badass”

Gears of War 2

 Great online community

 New online functionality

 Better for gamers

 Better for Epic

 Build our own online backend

 Add features not supported by Xbox LIVE

Gears of War 2
Online Backend

 What features?

 How will it work?

 How will we build it?

 What technologies will we use?

Gears of War 2
Online Backend

 Starting from scratch

 Small team

 3-4 programmers

 Also doing client-side work

 Little backend experience

 (aside from me)

 Lots of data to handle

 Less than a year

 Team at Microsoft working on backup

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

Unreal MCP

XLSP

 Xbox LIVE Server Platform

 Used when adding custom online features
to Xbox LIVE games

 Provides a secure and trusted channel of
communication

Getting Started

 XLSP

 Game to backend data

 Backend to game data

Getting Started
Web Server

 Game’s interface to the backend

 HTTP is a simple protocol

 Less work

 Less risk

Getting Started
SQL Database

 Stores incoming data

 Stores outgoing data

Getting Started
Web Server & Database

 Mature

 Well-known

 Quick startup

Service Types

 Bidirectional Service

 Game sends a request

 Game receives data in response

 Example: message of the day

 Asynchronous Service

 Game sends data

 Fire and forget

 Example: game stats reports

Bidirectional Services
Example: MOTD

Bidirectional Services
Example: MOTD

 Game sends request to the web server

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

Bidirectional Services
Example: MOTD

 Game sends request to the web server

 MOTD is pulled from the database

 Game receives MOTD via HTTP response

Asynchronous Services
Example: Game Stats

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

 Processing service pulls it

Asynchronous Services
Example: Game Stats

 Game uploads a stats report

 Web handler puts it in a queue

 Processing service pulls it

 Game info is stored in the database

Asynchronous Services
Example: Game Stats

 The data is replicated to two other
databases

 Epic for data analysis

 www.gearsofwar.com

www.gearsofwar.com

Data Analysis
Internal

 Internal uses

 Website

 Custom reports

 Visualizations

 Charts

 Graphs

 Heatmaps

 Numbers

Data Analysis
Internal

 Default Weapon by Experience Level

Data Analysis
Internal

 Weapon Kill Trends

Data Analysis
Internal

 Game Type Trends

Data Analysis
Internal

 Shotgun Kills on Day One

Data Analysis
Post-Processing

 Asynchronous services do minimal
processing in production

 For further analysis, more processing is
needed

 Custom post-processing apps dig further
into the data

 Use the Epic replicated database

 No direct effect on production backend

Data Analysis
Post-Processing

Data Analysis
Post-Processing

 Replicated data arrives

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

 Store details back in the database

Data Analysis
Post-Processing

 Replicated data arrives

 Apps post-process the data

 Store details back in the database

 Post-processed data used for analysis

Data Analysis
SQL Trouble

 Initially used SQL for analysis

 Trouble after Gears 2 release

 Queries were very slow

 Huge table of weapon data

 SQL-based analysis was impractical

 Internal website was unusable

Data Analysis
SQL Trouble

 Initially used SQL for analysis

 Trouble after Gears 2 release

 Queries were very slow

 Huge table of weapon data

 SQL-based analysis was impractical

 Internal website was unusable

Data Analysis
OLAP to the Rescue

 SQL

 Relational database

 Great for storage

 Bad for analysis

 OLAP (OnLine Analytical Processing)

 Complements SQL

 Aggregates data in “cubes”

 Great for analysis

Data Analysis
OLAP to the Rescue

 SQL

 Relational database

 Great for storage

 Bad for analysis

 OLAP (OnLine Analytical Processing)

 Complements SQL

 Aggregates data in “cubes”

 Great for analysis

Scalability & Performance

 Estimates

 100s of transactions per second

 Gigabytes of data per day

Scalability & Performance

 Game clients

 First line of defense

Scalability & Performance

 Load balancer

 Second line of defense

Gears 2

Clients

Load

Balancer

Server

Server

Server

Scalability & Performance
Application Servers

 Horizontally scalable machines

 Each application server has:

 Web server

 For each Asynchronous Service

One queue

One processing service

 Self-contained

 Only talk to the database

 Add servers to add capacity

Scalability & Performance
Multi-threaded Apps

 Multi-core servers

 Web server (IIS)

 Queues (MSMQ)

 Database (MS SQL Server)

 Processing services (custom C#)

Scalability & Performance
Asynchronous Services

 Local queues

 Each web server has a queue

 Minimize processing

 Example: game stats upload

 Originally XML

 Too large

 Then compressed XML

 Too slow

 Finally, custom binary

 Small and fast

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Bidirectional Services

 Cache when possible

 Reduces DB load

 Reduces turnaround time

 Example: MOTD caching

Scalability & Performance
Database

 Multiple application servers

 Single database is a bottleneck

Scalability & Performance
Database - Replication

 Production database

 Replicated to:

 www.gearsofwar.com

 Epic internal

 Expensive queries don’t run on production

Scalability & Performance
Database – Profile Caching

 Matches a player to a profile ID

 Performance bottleneck

 Cache profiles when possible

 Web handlers

 Asynchronous processing services

 Post-processing services

 Pro: Increased performance

 Con: Cache management

Scalability & Performance
Database – Profile Caching

GetOrAddProfile(Player)

{

if(PlayerInLocalCache)

return ProfileID from Cache

if(PlayerInProfilesTable)

return ProfileID from Table

AddPlayerToProfilesTable(Player)

return ProfileID from Table

}

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

Scalability & Performance
Database – Profile Caching

BeginTransaction()

ProfileID = GetOrAddProfile(Player)

AddProfileIDToLocalCache(ProfileID)

DoOtherDatabaseOperations()

CommitTransaction()

if(TransactionSucceeded)

AddProfileIDToLocalCache(ProfileID)

Stress Testing

 Stress test client

 Simulates game operations

 MOTD requests

 Game stats uploads

 etc.

 Configurable

 Operations per second

 Number of threads

 Length of run

 etc.

Stress Testing

 Find bottlenecks

 Test optimizations

 Example: game stats uploads

 Identify problem area

 Test alternatives

 Measure performance change

Stress Testing

 Find bugs

 Test fixes

 Example: database deadlock

 Identify and fix bug

 Verify fix

Administration

 Web-based

 No direct access to production

 Did not know who would be administering
MCP

 Already using web server

 Web browser as admin client

Administration
Features

 Message of the day

Administration
Features

 Custom game settings

Administration
Features

 Edit MCP configuration

Administration
Special Events

 Schedule custom game settings

 Schedule MOTDs

 Valentine’s Day Event

 Old School Weekend

 Fourth of July Weekend

Administration
Special Events

 12 Days of Gearsmas

 Different MOTDs and game settings each day

 150+ MOTDs scheduled in multiple languages

Administration

 Can be cumbersome for common uses

 Setting up MOTD can be time consuming

 Post-release updates helped

 Uses cases are important

Hosting

Hosting

 Microsoft hosts Gears 2 MCP

 We do not have direct access

 Only web admin access

 Changes can take weeks

 Update checklist

Hosting
Update Checklist

 Database Scripts

 Functional Tests

 Stress Tests

 Front End

 Web Backend

 Upgrade Doc

 Health Model

 Nightly MOM Data

 Perf Counters

 Error Handler

 Replication

 Data Aging

 Post Processing

 Reporting/Charting

Hosting
MCP Front End

 Deployment and
verification tool

 Helps with MCP
installation

 Also used for local
development

What could possibly go wrong?

Data Center Problems

 Failed cooling system

 Machines overheating

 Multiple day downtime

 Luckily, not production

Data Center Problems

 Failed cooling system

 Machines overheating

 Multiple day downtime

 Luckily, not production

 Failed power supply

 Redundant backup failed

 Outage and lost data

 Unfortunately, production

Monitoring

 MOM (SCOM)

 Health model

 Performance counters

 Event logs

 Lots of iteration

 Warning thresholds

 Error thresholds

 Hard to predict real world

Monitoring
Problems

 Thresholds were set too low

 We did not want to miss any issues

 But we ended up with false alarms

 Event log was not cleared before release

 Simulation had filled the event log

 Alerting was turned on

 Flood of false alerts

 We crashed a phone

 SMS charges $$$

Monitoring
Ongoing…

 Problems can always happen

 Need to continue monitoring

 For the life of the game

 Or as long as online is supported

Monitoring
Ongoing…

 Problems can always happen

 Need to continue monitoring

 For the life of the game

 Or as long as online is supported

Launch

 Testing had been done

 Local, PartnerNet, Production

 But Production testing was done from
inside the network

 External connections had not been tested
– and did not work

 We could only sit and wait

 Was fixed less than 2 minutes before our
midnight release

Success!

 Great for Gears 2

 New features

 Gameplay feedback

 Special events

 Held up under load

 Platform for future products

 Using with the UDK (Unreal Development Kit)

 Available to Unreal Engine licensees

Q&A

 Dan Schoenblum

 dan.schoenblum@epicgames.com

 Epic Games

 Booth BS200, South Hall

www.epicgames.com

 Unreal Technology

www.unrealtechnology.com

Copyright © 2010, Epic Games, Inc. All Rights Reserved. Epic, Epic Games, the Epic Games logo, Gears of War, Unreal
Tournament, Unreal Engine, Unreal MCP and the Circle-U logo, are trademarks or registered trademarks of Epic Games, Inc. in
the United States of America and elsewhere. Other brands or product names are the trademarks of their respective owners.

mailto:dan.schoenblum@epicgames.com
http://www.epicgames.com/

