
Building the Server
Software for Eliminate

Introduction

 Stephen Detwiler
 Director of Engineering, ngmoco:)

  James Marr
 Lead Engineer R&D, ngmoco:)

Introduction

 Build the definitive FPS for iPhone
  in only 5 months

 Multiplayer deathmatch
 wifi and 3g

  Free to play

 With three engineers

Outline

 Gameplay
  Lobby
 Matchmaking
  Load Testing
  Live Tuning
 Deployment
 Monitoring

Server Architecture

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Gameplay

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 1 of 7

Gameplay: Requirements

  3G requirement drives decision
 ~100kbps, 150ms latency

 Aggressive bandwidth optimization
  Prediction to hide latency
 UDP

Gameplay: Options

 Are there any opensource options?
 Shipping to clients, so no GPL

 Are there any commercial options?

  Yes, Quake 3

 Dialup from 1999 looks a lot like
3G from 2009

Gameplay: Q3 Cost

 Source code
  plus full rights
 minus any technical support
 = $10k

 Same cost as a man month

Gameplay: Q3 Benefits

 Graphics
 BSP + portals
 Dynamic lights, static lightmaps
 Keyframe animation

  Tools
 Custom map editor (Radiant)
 3DS Max model animation exporters

  Lots of information online about
how to extend the engine

Gameplay: Moving On

  Purchased solution for “mundane”
gameplay networking

 Able to focus on rest of experience

Lobby

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 2 of 7

Lobby: Requirements

 Handles everything outside of
realtime gameplay
  Inventory and commerce
 Proxy to Plus+ services
 Chat
 Matchmaking requests
 Party management

 Support 10K+ concurrent users

Lobby: Approach

 Rejected: Periodic HTTP polling
 Easy to scale

 Lots of HTTP front ends
 Big database backend

 Latency will be high in many cases
 TCP socket setup over 3G is slow

  Sometimes over 2 seconds!

 Hard to tell when users go away
 Must have timeout thresholds

Lobby: Approach

 Chosen: Persistent TCP socket
 Only one initial TCP setup
 User is gone when socket closes
 Much lower message delivery latency
 Can push messages
 Harder to scale

 One socket per user

Lobby: Implementation

  This will take more than 5 months
to build.
 What can we use off the shelf?

  Yes, XMPP

Lobby: XMPP

  Jabber/IM/Google Talk
 Proven to be scalable

  TCP with XML payloads
 Can also route custom messages
 Many off the shelf implementations

  jabberd, jabberd 2.x, ejabberd , etc.

Lobby: Evaluating

  jabberd and jabberd 2.x
 C/C++ codebase
 Not actively supported
 Early testing showed it did not scale
well past 1000 users

 Implementation difficult to extend

Lobby: Evaluating

  ejabberd
 Highly scalable

 Load tested to 30K concurrent users

 Extendable
 Active community

 But written in erlang

Lobby: Erlang

{Priority, RepackGameServers, IsGameServer} =
case FromSession#ng_session.is_admin of
true ->

 case lists:filter(fun({"isGameServer", _IsGS}) -> true;
 (_) -> false end, OriginalAttributes) of
 [{_, IsGS}] -> {"0", "0", IsGS};
 _ -> {"0", "0", "1"}
 end;

false ->
 AnyEnergy = does_any_player_have_energy(Players),
 case AnyEnergy of
 true -> {"1", "0", "0"};
 _ -> {"0", "1", "0”}
 end

end,

Lobby: Erlang

  Functional language
 Crazy syntax
 Distributed message passing built

into language
 Data persistence occurs in

database

Lobby: Plus+ Integration

 Users log into XMPP using Oauth
credentials from Plus+

  Plus+ Friends and Followers
populate user’s XMPP roster

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Lobby: Scaling

  ejabberd clusters well
 Almost for free using erlang

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Lobby: Inventory &
Purchasing
 All persistent data stored in Plus+
 XMPP validates and caches data
 XMPP nodes can start and stop at

anytime
iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Matchmaking

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 3 of 7

Matchmaking: Goals

 Console quality matchmaking

 Dirt simple user experience
 Press a button
 Play against fun opponents

Matchmaking: Options

 Are there commercial options?
 Microsoft? Infinity Ward? Blizzard?

 Are there opensource alternatives?

 No. We’re building our own

Matchmaking: Overview

 Matchmaking server
 Receives requests from Lobby server
 Finds a good grouping of players
 Launches game server instance
  Inform clients through Lobby server

Matchmaking: Instances

 Quake 3 dedicated server is one
process per concurrent game

 Game manager on each server
 Talks to matchmaking server
 Launches instances on-demand
 Reports max instance capacity

Matchmaking: Approach

 Rejected: SQL DB
 All state stored in DB
 Query DB, process results, repeat
 Easy to cluster, provide redundancy

 High data latency
 Complicated

Matchmaking: Approach

 Accepted: In Memory
 All players kept in memory
 Higher performance
 Fast to implement

 Won’t cluster, one box must do it all
 Server crashes lose some data

Matchmaking: Qualities

  Each player has qualities
 Estimated skill
 Character level
 Desired party size
 Ping times to datacenters
 Time waiting in matchmaking

  Find others with similar qualities
 Start with narrow tolerances
 Over time, if can’t find a match, dilate

tolerances for qualities

Matchmaking: Qualities

0

750

1500

2250

3000

0 3 6 9 12 15

S
k
il
l
d

if
fe

re
n

ce
 t

o
le

ra
n

ce

Seconds in matchmaking

0

1

2

3

4

5

0 3 6 9 12 15

M
in

im
u

m
 p

a
rt

y
si

ze

Seconds in matchmaking

Matchmaking: Algorithm

 Sort players by one quality
 We choose Estimated Skill

  For each player:
 Find other candidate players by

iterating forward and backwards until
outside of skill tolerance

 Evaluate other quality tolerances for
each candidate

 Form match if enough candidates pass

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 1 second
Skill Tolerance: 500
Level Tolerance: 2

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 2 seconds
Skill Tolerance: 1000
Level Tolerance: 4

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: A
Skill: 200
Level: 2
Ping: 100ms

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 3 seconds
Skill Tolerance: 1500
Level Tolerance: 6

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: A
Skill: 200
Level: 2
Ping: 100ms

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Name: B
Skill: 750
Level: 13
Ping: 125ms

Matchmaking: Skill

  Players start with skill of zero
 After match, update skill estimate

based on previous skill estimate
and match outcome

 Veteran beating noob
 veteran += little
 noob -= little

 Noob beating veteran
 noob += big
 veteran -= big

Matchmaking: Skill

 Math loosely based on Halo 2
 Early values are positive sum game
 Middle values are zero sum game
 Late values are negative sum game

-100%

0%

100%

0 2500 5000 7500 10000

S
k
il
l
P

o
in

ts
 A

d
d

e
d

 /

R
e
m

o
ve

d
 f

ro
m

 S
ys

te
m

Player Skill

Matchmaking: Speed

 Need < 10% wait / play ratio
 Status quo

 ~ 10+ minutes per match
 ~ 1+ minutes to find opponents

  Eliminate
 ~ 3 minutes per match
 ~ 15 seconds to find opponents

Matchmaking: Capacity

 Can’t cluster, must be confident
one box can handle load

 Algorithm is worst case θ(n2),
expected θ(n)

  From unit testing, one box can
handle 50k players / second
 <10% of player time in matchmaking,

so supports 500k concurrent users

Matchmaking: Faults

  Two matchmaking servers
 Primary, backup

 Clients refresh match request
every 4 seconds

 System switches to backup if
primary stops responding

 Backup doesn’t know how long
players had been in matchmaking

Matchmaking: Wrinkle

  Initially, character level was
ignored by matchmaking
 Thinking: estimated skill =
 actual skill + character level

 HUGE outcry from users
  Incorporated character level in 2.0

Load Testing

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Game Servers

Geographically Distributed

Lobby

Topic 4 of 7

Load Testing: Why

 Not enough hardware at launch
 Users won’t come back

 Spend all of your money hardware
 You don’t make a sequel

Load Testing: How

 Build tools to generate load for
each component
 Measure CPU, memory and bandwidth

 Build model to estimate
requirements at different usage
levels
 DAUs, Concurrent Users, Session

Length

 Re-test often

Load Testing: XMPP

 Simulate player XMPP actions
 Login, chat, inventory, etc.

 Reuse actual XMPP client code
 Repurposed game manager

hardware
 Ran up to 30K users

Load Testing:
Matchmaking
 Unit test code easily matched 50k

players / second on a laptop

Load Testing: Game
Managers Take 1
 Needed to run actual game to

generate realistic load
 Only ran on iPhone

 Built headless version for OS X
 Not enough resources available to

stress even one game manager

Load Testing: Game
Managers Take 2
 Measured server load per single

game instance
 Created tool to generate matching

cpu load
 Continued spawning until OS

scheduler fell apart
 Reasonable results but not great

 Learned more when we went live

Live Tuning

iPhone

Matchmaking

Servers

Game Servers

Geographically Distributed

Lobby

Li
ve

 T
un

in
g

Topic 5 of 7

Live Tuning: Overview

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength
  Items for sale and price in store
 Regulating stat frequency

Live Tuning: Plists

 Configuration stored in plist
 Client downloads latest version to

drive UI, modify gameplay
 Servers consume latest version to

configure behavior, validate purchases

Live Tuning: Problem

  Initial implementation did not scale
 XML plist used to make erlang parsing

easier
 Served as base64 encoded XMPP

message

Live Tuning: Problem

  80KB plist at launch
 Quickly grew past 200KB
 Bandwidth usage spikes when

change published
 400+Mbps during update

0

100

200

300

400

500

Peak

Average

Live Tuning: Fix

  Eliminate 1.1 added more tuning
 plist exceeds 400KB
New version announced via XMPP
Downloaded over gzipped HTTP
 Bandwidth usage now about 120Mbps

0

100

200

300

400

500

Peak

Average

Deployment

iPhone

Matchmaking

Game Servers

Geographically Distributed

Lobby

D
ep

lo
ym

en
t

Topic 6 of 7

Deployment: Overview

  Eliminate uses lots of servers
 4 XMPP
 2 Matchmaking
 8 Game Managers
 2 Management

  Production, Staging and
Development deployments

 How do we deploy and manage?

Deployment: Release
Management
 Servers run Ubuntu 9.04 64 bit
 Components deployed with apt-get

 Versioned releases
 Software dependency tracking
 Robust upgrade path

  24 packages for Eliminate

Deployment: Release
Management
 Control script knows about all

machines in the cluster
Full system upgrades in under 1 minute
  $./control.py	 upgrade	

Can upgrade subsystems easily
	 $./control.py	 upgrade	 –c	 livefire-‐matchmaking	

Deployment: Geography

 XMPP, matchmaking and
management servers at ngmoco:)

 Geographically distributed game
managers

sfo
ams ord

iad nrt

Deployment: Scaling

 We run hardware to meet our
expected daily user load
 But concurrent user spikes occur

 Promotions
 New content creates renewed interest

Disable energy timer Content updates 1.1 release

Deployment: Scaling

 XMPP deployment can handle 20k
concurrent users
 Can add new capacity in 60 minutes if

required

 Matchmaking overbuilt so it never
has to scale

 Match 50K requests/second

Deployment: Scaling

 Amazon EC2 is our safety valve for
game managers

 New game managers in 5 minutes
 High-CPU Extra Large (c1.xlarge)

  EC2 Regions:
 US-East
 EU-West

Deployment: Scaling

 Why not use EC2 for everything?
 Compute time is cheap
 Bandwidth is not

EC2

Co-locate

Monitoring

iPhone

Matchmaking

M
on

it
or

in
g

Servers

Game Servers

Geographically Distributed

Lobby

Topic 7 of 7

Monitoring: Tools

 Need to track health of the system
  nagios

 Hardware health checks
 Text messages on component failure

 munin
 Visually graphs trends over time
 Bandwidth
 CPU
 Memory

Monitoring: Custom Tools

 Custom munin plugins
 Players online
 People waiting to get in a game
 Estimated wait time
 Active games

 Great for long term trends
 Not good for immediate feedback

Conclusion

  It took eight months
 Turns out this is hard

 What we learned that you should
know
 Reuse systems when possible
 Do load testing early and often
 Design a system that can scale

We’re Hiring ;)

 Did this sound fun?
 We’re looking for exceptional

engineers

Thank You

Questions?

