

Holger Gruen
European ISV Relations AMD

Direct3D 11 Indirect
Illumination

Holger Gruen
European ISV Relations AMD

Direct3D 11 Indirect
Illumination

Holger Gruen
European ISV Relations AMD

Direct3D 11 Indirect
Illumination

Indirect Illumination
Introduction 1

 Real-time Indirect illumination is an active
research topic

 Numerous approaches exist

Reflective Shadow Maps (RSM) [Dachsbacher/Stammiger05]

Splatting Indirect Illumination [Dachsbacher/Stammiger2006]

Multi-Res Splatting of Illumination [Wyman2009]

Light propagation volumes [Kapalanyan2009]

Approximating Dynamic Global Illumination in Image Space [Ritschel2009]

 Only a few support indirect shadows
Imperfect Shadow Maps [Ritschel/Grosch2008]

Micro-Rendering for Scalable, Parallel Final Gathering(SSDO) [Ritschel2010]

Cascaded light propagation volumes for real-time indirect illumination
[Kapalanyan/Dachsbacher2010]

 Most approaches somehow extend to multi-
bounce lighting

Indirect Illumination
Introduction 2

 This section will cover

An efficient and simple DX9-compliant RSM
based implementation for smooth one bounce
indirect illumination

 Indirect shadows are ignored here

 A Direct3D 11 technique that traces rays
to compute indirect shadows

 Part of this technique could generally be used
for ray-tracing dynamic scenes

Indirect Illumination w/o
Indirect Shadows

1. Draw scene g-buffer

2. Draw Reflective Shadowmap (RSM)
1. RSM shows the part of the scene that recieves

direct light from the light source

3. Draw Indirect Light buffer at ½ res
1. RSM texels are used as light sources on g-

buffer pixels for indirect lighting

4. Upsample Indirect Light (IL)

5. Draw final image adding IL

Step 1

 G-Buffer needs to allow reconstruction of

 World/Camera space position

 World/Camera space normal

 Color/ Albedo

 DXGI_FORMAT_R32G32B32A32_FLOAT
positions may be required for precise ray
queries for indirect shadows

Step 2

 RSM needs to allow reconstruction of

 World/Camera space position

 World/Camera space normal

 Color/ Albedo

 Only draw emitters of indirect light

 DXGI_FORMAT_R32G32B32A32_FLOAT
position may be required for ray precise
queries for indirect shadows

Step 3

 Render a ½ res IL as a deferred op

 Transform g-buffer pix to RSM space

 ->Light Space->project to RSM texel space

 Use a kernel of RSM texels as light
sources

 RSM texels also called Virtual Point Light(VPL)

 Kernel size depends on

 Desired speed

 Desired look of the effect

 RSM resolution

Computing IL at a G-buf Pixel 1

Sum up contribution of all VPLs in the kernel

Computing IL at a G-buf Pixel 2

g-buffer pixel

RSM texel/VPL

LNpN

pP

LP
pL

pL

PP

PP
D






    
VPLVPL

pL

LP
VPL AreaCol

PP

DNsatDNsat
onContributi 






2

This term is very similar to terms used in
radiosity form factor computations

Computing IL at a G-buf Pixel 3

stx : sub RSM texel x position [0.0, 1.0[

sty : sub RSM texel y position [0.0, 1.0[

A naive solution for smooth IL needs
to consider four VPL kernels with
centers at t0, t1, t2 and t3.

Computing IL at a g-buf pixel 4

IndirectLight = (1.0f-sty) * ((1.0f-stx) * + stx *) +

(0.0f+sty) * ((1.0f-stx) * + stx *)

Evaluation of 4 big VPL kernels is slow 

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

VPL kernel at t2

VPL kernel at t3

Computing IL at a g-buf pixel 5

SmoothIndirectLight =

(1.0f-sty)*(((1.0f-stx)*(B0+B3)+stx*(B2+B5))+B1)+

(0.0f+sty)*(((1.0f-stx)*(B6+B3)+stx*(B8+B5))+B7)+B4

stx : sub RSM texel x position of g-buf pix [0.0, 1.0[

sty : sub RSM texel y position of g-buf pix [0.0, 1.0[

This trick is probably known to some of you already. See
backup for a detailed explanation !

Indirect Light Buffer

Step 4

 Indirect Light buffer is ½ res

 Perform a bilateral upsampling
step
 See Peter-Pike Sloan, Naga K. Govindaraju, Derek

Nowrouzezahrai, John Snyder. "Image-Based Proxy
Accumulation for Real-Time Soft Global Illumination".
Pacific Graphics 2007

 Result is a full resolution IL

Step 5

Combine

Direct Illumination

 Indirect Illumination

Shadows (not mentioned)

Scene without IL

Combined Image

Combined Image

~280 FPS on a HD5970 @ 1280x1024
for a 15x15 VPL kernel

Deffered IL pass +
bilateral upsampling costs ~2.5 ms

DEMO

How to add Indirect
Shadows

1. Use a CS and the linked lists technique
 Insert blocker geomety of IL into 3D grid of lists –

let‘s use the triangles of the blocker for now
 see backup for alternative data structure

2. Look at a kernel of VPLs again

3. Only accumulate light of VPLs that are
occluded by blocker tris
 Trace rays through 3d grid to detect occluded VPLs

 Render low res buffer only

4. Subtract blocked indirect light from IL
buffer
 Blurred version of low res blocked IL is used

 Blur is combined bilateral blurring/upsampling

Insert tris into 3D grid of
triangle lists

Scene

Rasterize
dynamic

blockers to
3D grid

using a CS
and

atomics

Insert tris into 3D grid of
triangle lists

World space 3D grid
of triangle lists

around IL blockers
laid out in a UAV

(0,1,0)

eol = End of list (0xffffffff)

Scene

Rasterize
dynamic

blockers to
3D grid

using a CS
and

atomics

3D Grid Demo

Indirect Light Buffer

Emitter of
green
light

Blocker of
green light

Expected
indirect
shadow

Blocked Indirect Light

Indirect Light Buffer

Subtracting Blocked IL

Final Image

Final Image

~300 million rays per second for
Indirect Shadows

~70 FPS on a HD5970 @ 1280x1024

DEMO

Ray casting costs ~9 ms

Future directions

 Speed up IL rendering
 Render IL at even lower res

 Look into multi-res RSMs

 Speed up ray-tracing
 Per pixel array of lists for depth buckets (see backup)

 Other data structures

 Raytrace other primitive types
 Splats, fuzzy ellipsoids etc.

 Proxy geometry or bounding volumes of blockers

 Get rid of Interlocked*() ops
 Just mark grid cells as occupied => >150 fps

 Lower quality but could work on earlier hardware
through scattered splats

Q&A

Holger Gruen holger.gruen@AMD.com

Nicolas Thibieroz nicolas.thibieroz@AMD.com

Credits for the basic idea of how to implement
PPLL under Direct3D 11 go to Jakub Klarowicz
(Techland), Holger Gruen and Nicolas Thibieroz

(AMD)

mailto:holger.gruen@AMD.com
mailto:nicolas.thibieroz@AMD.com

Backup Slides IL

Computing IL at a g-buf pixel 1

 Want to support low res RSMs

 Want to create smooth indirect light

 Goal is bi-linear filtering of four VPL-Kernels
 Otherwise results don‘t look smooth

Computing IL at a g-buf pixel 2

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

Computing IL at a g-buf pixel 3

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

For smooth IL one needs to consider
four VPL kernels with centers at t0,
t1, t2 and t3.

Computing IL at a g-buf pixel 4

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

Center at t0

Computing IL at a g-buf pixel 4

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

Center at t1

Computing IL at a g-buf pixel 5

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t2

VPL kernel at t1

VPL kernel at t0

Center at t2

Computing IL at a g-buf pixel 6

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

VPL kernel at t2

VPL kernel at t3

Center at t3

Computing IL at a g-buf pixel 7

IndirectLight = (1.0f-sty) * ((1.0f-stx) * + stx *) +

(0.0f+sty) * ((1.0f-stx) * + stx *)

Evaluation of 4 big VPL kernels is slow 

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

VPL kernel at t2

VPL kernel at t3

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

VPL kernel at t2

VPL kernel at t3

Computing IL at a g-buf pixel 8

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

VPL kernel at t0

VPL kernel at t1

VPL kernel at t2

VPL kernel at t3

Computing IL at a g-buf pixel 9

Computing IL at a g-buf pixel 9

Evaluation of 7 small and 1 bigger VPL kernels is fast 

IndirectLight =

(1.0f-sty)*(((1.0f-stx)*(B0+B3)+stx*(B2+B5))+B1)+

(0.0f+sty)*(((1.0f-stx)*(B6+B3)+stx*(B8+B5))+B7)+B4

stx : sub texel x position [0.0, 1.0[

sty : sub texel y position [0.0, 1.0[

Insert Tris into 2D Map of
Lists of Tris

Light Scene

Rasterize
blockers of
IL from view
of light

2D buffer

Insert Tris into 2D Map of
Lists of Tris

Rasterize
blockers of
IL from view
of light using
a GS and
conservative
rasterization

Light Scene
2D buffer of lists of

triangles written to by
scattering PS eol = End of list (0xffffffff)

