


DirectCompute
Performance on DX11 
Hardware

Nicolas Thibieroz, AMD
Cem Cebenoyan, NVIDIA



Why DirectCompute?

 Allow arbitrary programming of GPU

 General-purpose programming

 Post-process operations

 Etc.

 Not always a win against PS though

 Well-balanced PS is unlikely to get 
beaten by CS

 Better to target PS with heavy TEX or 
ALU bottlenecks

 Use CS threads to divide the work and 
balance the shader out



Feeding the Machine

 GPUs are throughput oriented 
processors

 Latencies are covered with work

 Need to provide enough work to 
gain efficiency

 Look for fine-grained parallelism in 
your problem

 Trivial mapping works best

 Pixels on the screen

 Particles in a simulation



Feeding the Machine (2)

 Still can be advantageous to run a 
small computation on the GPU if it 
helps avoid a round trip to host

 Latency benefit

 Example: massaging parameters for 
subsequent kernel launches or draw 
calls

 Combine with DispatchIndirect() to 
get more work done without CPU 
intervention 



Scalar vs Vector

 NVIDIA GPUs are scalar

 Explicit vectorization unnecessary

Won’t hurt in most cases, but there are 
exceptions

 Map threads to scalar data elements

 AMD GPUs are vector

 Vectorization critical to performance

 Avoid dependant scalar instructions

 Use IHV tools to check ALU usage



CS5.0 >> CS4.0

 CS5.0 is just better than CS4.0

 More of everything

 Threads

 Thread Group Shared Memory

 Atomics

 Flexibility

 Etc.

 Will typically run faster

 If taking advantage of CS5.0 features

 Prefer CS5.0 over CS4.0 if 
D3D_FEATURE_LEVEL_11_0 supported



Thread Group Declaration

 Declaring a suitable number of thread 
groups is essential to performance
 numthreads(NUM_THREADS_X, NUM_THREADS_Y, 1)

void MyCSShader(...)

 Total thread group size should be above 
hardware’s wavefront size

 Size varies depending on GPUs!

 ATI HW is 64 at max. NV HW is 32.

 Avoid sizes below wavefront size
 numthreads(1,1,1) is a bad idea!

 Larger values will generally work well 
across a wide range of GPUs

 Better scaling with lower-end GPUs



Thread Group Usage

 Try to divide work evenly among all 
threads in a group

 Dynamic Flow Control will create 
divergent workflows for threads

 This means threads doing less work will sit idle 
while others are still busy

[numthreads(groupthreads,1,1)]

void CSMain(uint3 Gid : SV_GroupID, 

uint3 Gtid: SV_GroupThreadID)

{

...

if (Gtid.x == 0)

{

// Code here is only executed for one thread

}

}

!



Mixing Compute and Raster

 Reduce number of transitions 
between Compute and Draw calls

 Those transitions can be expensive!

Compute A
Compute B
Compute C
Draw X
Draw Y
Draw Z

Compute A
Draw X
Compute B
Draw Y
Compute C
Draw Z

>>



Unordered Access Views

 UAV not strictly a DirectCompute resource
 Can be used with PS too

 Unordered Access support scattered R/W
 Scattered access = cache trashing

 Prefer grouped reads/writes (bursting)

 E.g. Read/write from/to float4 instead of float

 NVIDIA scalar arch will not benefit from this

 Contiguous writes to UAVs

 Do not create a buffer or texture with UAV 
flag if not required
 May require synchronization after render ops

 D3D11_BIND_UNORDERED_ACCESS only if needed!

 Avoid using UAVs as a scratch pad!
 Better use TGSM for this



Buffer UAV with Counter

 Shader Model 5.0 supports a counter on 
Buffer UAVs
 Not supported on textures

 D3D11_BUFFER_UAV_FLAG_COUNTER flag in 
CreateUnorderedAccessView()

 Accessible via:
 uint IncrementCounter();

 uint DecrementCounter();

 Faster method than implementing manual 
counter with UINT32-sized R/W UAV
 Avoids need for atomic operation on UAV

 See Linked List presentation for an 
example of this

 On NVIDIA HW, prefer Append buffers



Append/Consume buffers

 Useful for serializing output of a 
data-parallel kernel into an array

 Can be used in graphics, too!

 E.g. deferred fragment processing

 Use with care, can be costly

 Introduce serialization point in the API

 Large record sizes can hide the cost of 
append operation



Atomic Operations

 “Operation that cannot be 
interrupted by other threads until it 
has completed”
 Typically used with UAVs

 Atomic operations cost performance
 Due to synchronization needs

 Use them only when needed
 Many problems can be recast as more 

efficient parallel reduce or scan

 Atomic ops with feedback cost even 
more
E.g. Buf->InterlockedAdd(uAddress, 1, 

Previous);



Thread Group Shared Memory

 Fast memory shared across threads 
within a group

 Not shared across thread groups!
 groupshared float2 MyArray[16][32];

 Not persistent between Dispatch() calls

 Used to reduce computation

 Use neighboring calculations by storing 
them in TGSM

 E.g. Post-processing texture instructions



TGSM Performance (1)

Access patterns matter!

Limited number of I/O banks

32 banks on ATI and NVIDIA HW

Bank conflicts will reduce 
performance



TGSM Performance (2)
 32 banks example

 Each address is 32 bits

 Banks are arranged linearly with addresses:

0 1 2 3 4 ... 31 32 33 34 35 ...

0 1 2 3 4 ... 31 0 1 2 3 ...

Address:

Bank:

 TGSM addresses that are 32 DWORD apart use the same 
bank

 Accessing those addresses from multiple threads will create 
a bank conflict

 Declare TGSM 2D arrays as MyArray[Y][X], and increment 
X first, then Y

 Essential if X is a multiple of 32!

 Padding arrays/structures to avoid bank conflicts can help

 E.g. MyArray[16][33] instead of [16][32]



TGSM Performance (3)

 Reduce access whenever possible

 E.g. Pack data into uint instead of 
float4

 But watch out for increased ALUs!

 Basically try to read/write once per 
TGSM address

 Copy to temp array can help if it avoids 
duplicate accesses!

 Unroll loops accessing shared mem

 Helps compiler hide latency



Barriers

 Barriers add a synchronization point 
for all threads within a group

 GroupMemoryBarrier()

 GroupMemoryBarrierWithGroupSync()

 Too many barriers will affect 
performance

 Especially true if work is not divided 
evenly among threads

 Watch out for algorithms using 
many barriers



Maximizing HW 
Occupancy
 A thread group cannot be split 

across multiple shader units

 Either in or out

 Unlike pixel work, which can be 
arbitrarily fragmented

 Occupancy affected by:

 Thread group size declaration

 TGSM size declared

 Number of GPRs used

 Those numbers affect the level of 
parallelism that can be achieved



Maximizing HW 
Occupancy (2)

 Example: HW shader unit:

 8 thread groups max

 32KB total shared memory

 1024 threads max

 With thread group size of 128 threads 
requiring 24KB of shared memory can 
only run 1 thread group per shader unit 
(128 threads) BAD

 Ask your IHVs about GPU Computing 
documentation



Maximizing HW 
Occupancy (3)

 Register pressure will also affect 
occupancy

 You have little control over this

 Rely on drivers to do the right thing 

 Tuning and experimentations are 
required to find the ideal balance

 But this balance varies from HW to HW!

 Store different presets for best 
performance across a variety of GPUs



Conclusion

 Threadgroup size declaration 
essential to performance

 I/O can be a bottleneck

 TGSM tuning is important

 Minimize PS->CS->PS transitions

 HW occupancy is GPU-dependent

 DXSDK DirectCompute samples not 
necessarily using best practices atm!

 E.g. HDRToneMapping, OIT11



Questions?

Nicolas.Thibieroz@amd.com

cem@nvidia.com


