


DirectCompute
Performance on DX11 
Hardware

Nicolas Thibieroz, AMD
Cem Cebenoyan, NVIDIA



Why DirectCompute?

 Allow arbitrary programming of GPU

 General-purpose programming

 Post-process operations

 Etc.

 Not always a win against PS though

 Well-balanced PS is unlikely to get 
beaten by CS

 Better to target PS with heavy TEX or 
ALU bottlenecks

 Use CS threads to divide the work and 
balance the shader out



Feeding the Machine

 GPUs are throughput oriented 
processors

 Latencies are covered with work

 Need to provide enough work to 
gain efficiency

 Look for fine-grained parallelism in 
your problem

 Trivial mapping works best

 Pixels on the screen

 Particles in a simulation



Feeding the Machine (2)

 Still can be advantageous to run a 
small computation on the GPU if it 
helps avoid a round trip to host

 Latency benefit

 Example: massaging parameters for 
subsequent kernel launches or draw 
calls

 Combine with DispatchIndirect() to 
get more work done without CPU 
intervention 



Scalar vs Vector

 NVIDIA GPUs are scalar

 Explicit vectorization unnecessary

Won’t hurt in most cases, but there are 
exceptions

 Map threads to scalar data elements

 AMD GPUs are vector

 Vectorization critical to performance

 Avoid dependant scalar instructions

 Use IHV tools to check ALU usage



CS5.0 >> CS4.0

 CS5.0 is just better than CS4.0

 More of everything

 Threads

 Thread Group Shared Memory

 Atomics

 Flexibility

 Etc.

 Will typically run faster

 If taking advantage of CS5.0 features

 Prefer CS5.0 over CS4.0 if 
D3D_FEATURE_LEVEL_11_0 supported



Thread Group Declaration

 Declaring a suitable number of thread 
groups is essential to performance
 numthreads(NUM_THREADS_X, NUM_THREADS_Y, 1)

void MyCSShader(...)

 Total thread group size should be above 
hardware’s wavefront size

 Size varies depending on GPUs!

 ATI HW is 64 at max. NV HW is 32.

 Avoid sizes below wavefront size
 numthreads(1,1,1) is a bad idea!

 Larger values will generally work well 
across a wide range of GPUs

 Better scaling with lower-end GPUs



Thread Group Usage

 Try to divide work evenly among all 
threads in a group

 Dynamic Flow Control will create 
divergent workflows for threads

 This means threads doing less work will sit idle 
while others are still busy

[numthreads(groupthreads,1,1)]

void CSMain(uint3 Gid : SV_GroupID, 

uint3 Gtid: SV_GroupThreadID)

{

...

if (Gtid.x == 0)

{

// Code here is only executed for one thread

}

}

!



Mixing Compute and Raster

 Reduce number of transitions 
between Compute and Draw calls

 Those transitions can be expensive!

Compute A
Compute B
Compute C
Draw X
Draw Y
Draw Z

Compute A
Draw X
Compute B
Draw Y
Compute C
Draw Z

>>



Unordered Access Views

 UAV not strictly a DirectCompute resource
 Can be used with PS too

 Unordered Access support scattered R/W
 Scattered access = cache trashing

 Prefer grouped reads/writes (bursting)

 E.g. Read/write from/to float4 instead of float

 NVIDIA scalar arch will not benefit from this

 Contiguous writes to UAVs

 Do not create a buffer or texture with UAV 
flag if not required
 May require synchronization after render ops

 D3D11_BIND_UNORDERED_ACCESS only if needed!

 Avoid using UAVs as a scratch pad!
 Better use TGSM for this



Buffer UAV with Counter

 Shader Model 5.0 supports a counter on 
Buffer UAVs
 Not supported on textures

 D3D11_BUFFER_UAV_FLAG_COUNTER flag in 
CreateUnorderedAccessView()

 Accessible via:
 uint IncrementCounter();

 uint DecrementCounter();

 Faster method than implementing manual 
counter with UINT32-sized R/W UAV
 Avoids need for atomic operation on UAV

 See Linked List presentation for an 
example of this

 On NVIDIA HW, prefer Append buffers



Append/Consume buffers

 Useful for serializing output of a 
data-parallel kernel into an array

 Can be used in graphics, too!

 E.g. deferred fragment processing

 Use with care, can be costly

 Introduce serialization point in the API

 Large record sizes can hide the cost of 
append operation



Atomic Operations

 “Operation that cannot be 
interrupted by other threads until it 
has completed”
 Typically used with UAVs

 Atomic operations cost performance
 Due to synchronization needs

 Use them only when needed
 Many problems can be recast as more 

efficient parallel reduce or scan

 Atomic ops with feedback cost even 
more
E.g. Buf->InterlockedAdd(uAddress, 1, 

Previous);



Thread Group Shared Memory

 Fast memory shared across threads 
within a group

 Not shared across thread groups!
 groupshared float2 MyArray[16][32];

 Not persistent between Dispatch() calls

 Used to reduce computation

 Use neighboring calculations by storing 
them in TGSM

 E.g. Post-processing texture instructions



TGSM Performance (1)

Access patterns matter!

Limited number of I/O banks

32 banks on ATI and NVIDIA HW

Bank conflicts will reduce 
performance



TGSM Performance (2)
 32 banks example

 Each address is 32 bits

 Banks are arranged linearly with addresses:

0 1 2 3 4 ... 31 32 33 34 35 ...

0 1 2 3 4 ... 31 0 1 2 3 ...

Address:

Bank:

 TGSM addresses that are 32 DWORD apart use the same 
bank

 Accessing those addresses from multiple threads will create 
a bank conflict

 Declare TGSM 2D arrays as MyArray[Y][X], and increment 
X first, then Y

 Essential if X is a multiple of 32!

 Padding arrays/structures to avoid bank conflicts can help

 E.g. MyArray[16][33] instead of [16][32]



TGSM Performance (3)

 Reduce access whenever possible

 E.g. Pack data into uint instead of 
float4

 But watch out for increased ALUs!

 Basically try to read/write once per 
TGSM address

 Copy to temp array can help if it avoids 
duplicate accesses!

 Unroll loops accessing shared mem

 Helps compiler hide latency



Barriers

 Barriers add a synchronization point 
for all threads within a group

 GroupMemoryBarrier()

 GroupMemoryBarrierWithGroupSync()

 Too many barriers will affect 
performance

 Especially true if work is not divided 
evenly among threads

 Watch out for algorithms using 
many barriers



Maximizing HW 
Occupancy
 A thread group cannot be split 

across multiple shader units

 Either in or out

 Unlike pixel work, which can be 
arbitrarily fragmented

 Occupancy affected by:

 Thread group size declaration

 TGSM size declared

 Number of GPRs used

 Those numbers affect the level of 
parallelism that can be achieved



Maximizing HW 
Occupancy (2)

 Example: HW shader unit:

 8 thread groups max

 32KB total shared memory

 1024 threads max

 With thread group size of 128 threads 
requiring 24KB of shared memory can 
only run 1 thread group per shader unit 
(128 threads) BAD

 Ask your IHVs about GPU Computing 
documentation



Maximizing HW 
Occupancy (3)

 Register pressure will also affect 
occupancy

 You have little control over this

 Rely on drivers to do the right thing 

 Tuning and experimentations are 
required to find the ideal balance

 But this balance varies from HW to HW!

 Store different presets for best 
performance across a variety of GPUs



Conclusion

 Threadgroup size declaration 
essential to performance

 I/O can be a bottleneck

 TGSM tuning is important

 Minimize PS->CS->PS transitions

 HW occupancy is GPU-dependent

 DXSDK DirectCompute samples not 
necessarily using best practices atm!

 E.g. HDRToneMapping, OIT11



Questions?

Nicolas.Thibieroz@amd.com

cem@nvidia.com


