:\\\‘E \ f\\ﬁ\ T
etwork. Inspire.
RN LN \ ¥ AR

=
y

-
g

3 SN\ ‘ & . Y | \\\ | '@ . (e 4) ‘ : E = |
\ ¢ Www.GDConf.com
N Y 1 N 0T

<C
()
o
O
A
O
C
(Lo}
| -
L
| =
o
Va)
=
@
+—
c
(5}
o
()}
c
O
O
0
(@)
=
(=]
|
(=)
N
~
m
e
()}
N
U
=
1]
=
o
U
=
@
e
()
L
c
(@)
o
V)
| .
()
(o0
o
(8]
>
()
e
@
=
(4o}
(&)

Game Developers
Conference®

March 9-13, 2010

Moscone Cent

0s enter
San Francisco, CA
www.GDConf.com

: \
Leal urf‘? ptwork. '71‘3{1[(‘:‘ | \)
- { Hardware
‘\ X _: “-b. :\‘_ - \:
\ _\‘s\ '; \ Q
) N N
NN

Cem Cebenoyan, NVIDIA

Why DirectCompute?

= Allow arbitrary programming of GPU
General-purpose programming

Post-process operations
Etc.

= Not always a win against PS though

= Well-balanced PS is unlikely to get
beaten by CS

Better to target PS with heavy TEX or
ALU bottlenecks

Use CS threads to divide the work and
balance the shader out

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

Feeding the Machine

P
“a .8 @ GPUs are throughput oriented
PN

4. processors
Latencies are covered with work
= Need to provide enough work to
gain efficiency
= Look for fine-grained parallelism in
your problem
= Trivial mapping works best

Pixels on the screen
Particles in a simulation

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

Feeding the Machine (2)

3 M j@ = Still can be advantageous to run a
@ 9 small computation on the GPU if it
D -~ helps avoid a round trip to host

Nt N Latency benefit

Example: massaging parameters for
subsequent kernel launches or draw
calls
= Combine with DispatchIndirect() to
get more work done without CPU
Intervention

Game Developers
Conference®

Moscone Center

www.GDConf.com

Scalar vs Vector

")h @ @ » NVIDIA GPUs are scalar

Explicit vectorization unnecessary

@ Won't hurt in most cases, but there are
exceptions

Map threads to scalar data elements

«» AMD GPUs are vector
Vectorization critical to performance
Avoid dependant scalar instructions

= Use IHV tools to check ALU usage

~- (CS5.0 >> CS4.0

= CS5.0 is just better than CS4.0

i) @ = More of everything
Threads
Thread Group Shared Memory
Atomics
Flexibility
Etc.
= Will typically run faster
If taking advantage of CS5.0 features

= Prefer CS5.0 over CS4.0 if
D3D_FEATURE_LEVEL_11_ 0 supported

Game Developers
Conference”
March 9-13, 2010

adn anasco, LA
www.GDConf.com

Thread Group Declaration

= Declaring a suitable number of thread

groups is essential to performance

numthreads (NUM_THREADS X, NUM THREADS Y, 1)
void MyCSShader(...)

= Total thread group size should be above
hardware’s wavefront size
Size varies depending on GPUs!
ATI HW is 64 at max. NV HW is 32.

= Avoid sizes below wavefront size
numthreads (1,1,1) IS a bad idea!

= Larger values will generally work well
across a wide range of GPUs
Better scaling with lower-end GPUs

Game Developers
Conference

March 9-13, 2010

Moscone Center

San Francisco, CA

Thread Group Usage

= Try to divide work evenly among all
threads in a group

= Dynamic Flow Control will create
divergent workflows for threads

This means threads doing less work will sit idle
while others are still busy

[numthreads (groupthreads,1,1)]
void CSMain(uint3 Gid : SV_GrouplID,
uint3 Gtid: SV GroupThreadID)

!

// Code here is gfly executed for one thread

(Gtid.x == 0)

Game Developers
Conference”
March 9-13, 2010

Mixing Compute and Raster

= Reduce number of transitions

AN N between Compute and Draw calls

; 1\ = Those transitions can be expensive!
Compute A Compute A
Compute B Draw X
ComputeC >» > Compute B
Draw X Draw Y
Draw Y Compute C
Draw Z Draw Z

Game Developers
Conference”
March 9-13, 2010

San Francisco, CA
www.GDConf.com

Unordered Access Views

= UAV not strictly a DirectCompute resource
Can be used with PS too

= Unordered Access support scattered R/W
Scattered access = cache trashing
Prefer grouped reads/writes (bursting)
E.g. Read/write from/to float4 instead of float
NVIDIA scalar arch will not benefit from this

= Contiguous writes to UAVs

= Do not create a buffer or texture with UAV
flag if not required
May require synchronization after render ops
D3D11_BIND_UNORDERED_ACCESS only if needed!

= Avoid using UAVs as a scratch pad!
Better use TGSM for this

Game Developers
Conference”
March 9-13, 2010

www.GDConf.com

Buffer UAV with Counter

= Shader Model 5.0 supports a counter on
Buffer UAVs

Not supported on textures

D3D11 BUFFER UAV FLAG COUNTER flag Ia
CreateUnorderedAccessView ()

= Accessible via:
uint IncrementCounter () ;
ulnt DecrementCounter () ;

= Faster method than implementing manual
counter with UINT32-sized R/W UAV

Avoids need for atomic operation on UAV

= See Linked List presentation for an
example of this

» On NVIDIA HW, prefer Append buffers

Game Developers
Conference”
Mar -13,2010

www.GDConf.com

Append/Consume buffers

o N\ o
“u.@ = Useful for serializing output of a

L2 data-parallel kernel into an array
Can be used in graphics, too!
E.g. deferred fragment processing

» Use with care, can be costly
Introduce serialization point in the API

Large record sizes can hide the cost of
append operation

Game Developers
Conference’
March 9-13, 2010

www.GDConf .com

Atomic Operations

= “Operation that cannot be
interrupted by other threads until it
has completed”

Typically used with UAVs

= Atomic operations cost performance
Due to synchronization needs

« Use them only when needed

Many problems can be recast as more
efficient parallel reduce or scan

= Atomic ops with feedback cost even
more

E.g. Buf->InterlockedAdd (uAddress, 1,
Previous) ;

Game Developers
Conference”
March 9-13, 2010

Thread Group Shared Memory
= Fast memory shared across threads
P j 2 within a group
TR G Not shared across thread groups!
N groupshared float2 MyArray[1l6][32];
Not persistent between Dispatch() calls
\‘ :a = Used to reduce computation
N Use neighboring calculations by storing
. g them in TGSM
5 E.g. Post-processing texture instructions

1111111111111

TGSM Performance (1)

= Access patterns matter!
Limited number of I/O banks
32 banks on ATI and NVIDIA HW

: \% ‘ b\\ K&
NN *3 = Bank conflicts will reduce
. L & performance

TGSM Performance (2)

= 32 banks example
@ Each address is 32 bits

= Banks are arranged linearly with addresses:

Bank:

= TGSM addresses that are 32 DWORD apart use the same
bank

= Accessing those addresses from multiple threads will create
a bank conflict

= Declare TGSM 2D arrays as MyArray[Y][X], and increment
X first, then Y

= Essential if X is a multiple of 32!

= Padding arrays/structures to avoid bank conflicts can help
= E.g. MyArray[16][33] instead of [16][32]

Game Developers
Conference”
March 9-13, 2010

www.GDConf.com

TGSM Performance (3)

= Reduce access whenever possible

E.g. Pack data into uint instead of
float4

But watch out for increased ALUS!

= Basically try to read/write once per
TGSM address

Copy to temp array can help if it avoids
duplicate accesses!

«» Unroll loops accessing shared mem
Helps compiler hide latency

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

P

Barriers

= Barriers add a synchronization point
for all threads within a group
GroupMemoryBarrier()
GroupMemoryBarrierWithGroupSync()

= Too many barriers will affect
performance
Especially true if work is not divided
evenly among threads
= Watch out for algorithms using
many barriers

Maximizing HW

Occupancy
= A thread group cannot be split
across multiple shader units

Either in or out
Unlike pixel work, which can be
arbitrarily fragmented

= Occupancy affected by:
Thread group size declaration
TGSM size declared
Number of GPRs used

= Those numbers affect the level of
parallelism that can be achieved

Game Developers
Conference”
March 9-13, 2010

Maximizing HW
Occupancy (2)

= Example: HW shader unit:
8 thread groups max
32KB total shared memory
1024 threads max
= With thread group size of 128 threads
requiring 24KB of shared memory can
only run 1 thread group per shader unit
(128 threads) BAD

= Ask your IHVs about GPU Computing
documentation

Maximizing HW
Occupancy (3)

2
“a o ® @ Register pressure will also affect
RN occupancy

"D ~ You have little control over this
N N Rely on drivers to do the right thing ©
', ! «Tuning and experimentations are

required to find the ideal balance
But this balance varies from HW to HW!

Store different presets for best
performance across a variety of GPUs

Conclusion

= Threadgroup size declaration
essential to performance

« I/O can be a bottleneck

= TGSM tuning is important

= Minimize PS->CS->PS transitions
= HW occupancy is GPU-dependent

= DXSDK DirectCompute samples not
necessarily using best practices atm!
E.g. HDRToneMapping, OIT11

Game Developers
Conference®
March 9-13, 2010

Moscone Center
San Francisco, CA

i Questions?

Nicolas.Thibieroz@amd.com
cem@nvidia.com

