
Uncharted 2 Character
Pipeline:

An in-depth look at the creation
of U2's characters.

RD

Rich Diamant
Lead Character Artist

Judd Simantov

Lead Character TD

RD

Who Are We?

Presentation Overview:
Pipeline & Process Overview

What we wanted to fix from Uncharted 1

New challenges specific to Uncharted 2

Outsourcing

Conclusion

Questions & Answers

Modeling Process:
Base Sculpt Mesh

Arbitrary Game Mesh

Texturing/Sampling

Shader Setup

Base Sculpt Mesh:
Good Topology for sculpting
Uv's for texturing

Arbitrary Game Mesh:
Game Resolution Topology (As low as possible)
Correct Uv's for texturing

Arbitrary Game Mesh:

Texturing/Sampling:
Sample High resolution details from sculpt mesh to Arb
game mesh (Normal Map)
If high mesh was used to texture, sample color info,
otherwise texture game mesh

Shader Setup:
Create shaders and assign the maps using our custom
shader tools

Rigging Process:
Rig Pipeline

Deformation & Helper Joints

Skinning Process

Face Pipeline

JS

Rig Pipeline:
3 seperate skeletons:
Skeleton Sharing: Males, Females, Children, Creatures
All rigs have the same general orientation and naming
conventions
Main Character Joint #: 246

Animation Rig:
Standard Control Setup - kept simple to work with Motion Capture.
Custom DG Node links between Motion Capture and Control Rig
 All Controls are custom openGL locators for customization

Deformation & Helper Joints:
All deformations are joints
Helpers are run-time Set Driven Keys - no animation exported, saves
memory. Limited use because of Gimbal.
Use "Vector" cones to handle twists and more complex deformations.

Skinning Process:
Default Linear Blend Skinning
Use Maya's "Copy Skin Weights" to get a basic start to new meshes
History Tool allows modelers to modify topology - video
3-5 influences per vertex - more than this becomes unmanageable.
Use a motion capture range of motion to test the first pass, but the
game itself is the best range of motion test.

Face Pipeline:
Face Rig is all Joints
97 joints in the face
Same facial rig In-Game &
Cinematics
Custom API node to hold
all the pose data and do all
the backend calculations
UI that interfaces with the
node and allows you to
manage all the data

Face Pipeline:

Face Pipeline:

Tools Overview:

Tools Overview:

History Tool

Tools Overview:

Auto Rig Builder

Tools Overview:

PM LOD Tool

Tools Overview:

Builder

Diamant UV:

Very fast uv creation and editing
 -automatic uv generation
 -custom uv modifiers

Transfering single uv sets to models with multiple uv sets
 -does not override both sets

Realtime shrink wrapping of in game models to high res
models

Topology transferring and uv transferring from one mesh to
another that has the same topology but different point order

RD

Browser:

Used to quickly browse and manage .obj files
 -quickly import and export multiple files at once

Tools Overview:
Surfer

What we wanted to fix from Uncharted 1

Arbitrary Mesh Pipeline was too
convoluted:

The Problem:

Uncharted 1 had two separate meshes for every part.

Problems when updating either of the two meshes which
caused inconsistencies and management issues.

Major issue when dealing with the creation of wrinkle maps
since the poses were created on the game mesh

Arbitrary Mesh Pipeline was too
convoluted:

Partial Solution:
Used the same base head for the high res sculpt and the
game mesh.

Different topology for each of the
characters heads:

Problem:
Each character had different topology

 each character had to be rigged from scratch
creating the arbitrary game meshes took a long time

Different topology for each of the
characters heads:

Solution:
Created a standard Head mesh that every character used. (base section)
made creating the game mesh extremely fast
allowed us to transfer weighting to all main characters

Video: Transferring process using Diamant
UV tool

Re-topologizing game mesh :Video

Rigging Problems:

JS

Building a rig from scratch was a
nightmare:

We had no easy way of automating the setup.
No way of keeping consistent info across all the joints
and the control setups (orientation of controls and joint
orientation).
Animators can't transfer animation across skeletons.

The Problems:

Generalized the rig setup to allow for automation.
Wrote orientation procedure that would calculate
consistent orientation across all skeletons.
Created general rig control system to simply curve
control creation.

Solution:

Rig Builder and Animation on
different Skeletons:
Video:

Character Faces:

RD

Geometry in the faces and
expressions:

Wanted to achieve a higher level of fidelity
with the faces and expressions.
Needed to add more geometry and new
topology
New facial rig with significantly more bones

Geometry in the faces and
expressions:

Mouth area:
Uncharted 1's mouth area was very hard to weight
and didn't look very good.
Changed to an open mouth start pose
Added more geometry that flowed better for
deformation
Used custom tools to smooth the noise between
verts

Mouth area: Uncharted 1

Mouth area: Uncharted 1

Mouth area: Uncharted 2

Mouth area: Uncharted 2

Facial Controls:

Problem:
Uncharted 1 had Viewport
Controls

Animators couldn't easily see
what was on and what the
values are
Selection is annoying
Doesn't scale up well

Solution:
Switched to Channel Box sliders.

JS

Facial Rig/Shapes:

Spent some time researching more anatomy
Try to maintain bone structure and give the
feeling of skin and muscle moving over bone
Better understanding of how the face works
Give more control to the animators

Face Comparison:

Face Comparison:

Face Comparison:

Fixer Shapes:

Use more fixers to make sure when poses come
together we get more anatomically correct shapes
and more appealing shapes - Video

Improve the eyes:
Uncharted 1 Eye: Not Grounded

RD

Uncharted 2 Eyes:

Improve the eyes:
Uncharted 2 Eyes

Eye Compare:

Uncharted 1 Uncharted 2

Quick iteration times between
sculpting and in game:

Experimented with getting the quaded Zbrush mesh skinned
quickly and in game for approval before building the game
mesh.

Pros:
 -we didn't go too far into the character without seeing it in
game first

Cons:
 -Often didn't keep track of this and had to reskin things too
many times

Quick iteration times between
sculpting and in game:

Quick iteration times between
sculpting and in game:

New challenges specific to Uncharted 2

JS

New challenges specific to Uncharted 2:

LODs
Multiplayer skins
Optimization
Outsourcing
Villagers last minute
Normals not transforming based on translation for the eyes
Improved Hair

LODs:
Had not used lods in Uncharted 1.
Had to keep vertex sets low for Uncharted 2.
Decided to do this late in production.

LODs:
First started manually creating Lods
Used Maya PM Lod Tool to generate Lods.
Used Maya "Copy Skin Weights" from base geometry to all
Lods. - Video

The Completely Unexpected

Multiplayer

st

Multiplayer

Multiplayer

Needed Lods for each Multiplayer skin.
Had tons of Build Assets to manage

Separate actor for each MP skin and LODs
One skeleton for all characters
Needed facial animation shared

Multiplayer

Roughly 50 MP skins generated
Had tons of Build Assets to
manage

Separate actor for each MP
skin and LODs

Multiplayer

One skeleton for all characters
Females proportions were really hard to handle

Needed facial animation shared - video

Optimization:

Did not anticipate having to optimize as much
 -weren't as tight on Uncharted 1.
Vertex sets needed to be kept low.

used Lods
combined geometry into single pieces
used less shaders
combined textures to fit on single texture sheets

Turned off shadow casting on smaller objects
Turned off motion blur and other shader parameters on
smaller objects

Villagers last minute:
Initially only meant to be used in the far background and not
shown up close.
Very last minute change to add facial expressions and up the
quality for a better look.

RD

Villagers last minute:

RD

Normals not transforming based on
translation for the eyes:
Eye lids are driven by multiple joints right at the surface of the
lid.
 -Translation is used to transform the vertices.

Causes artifacts due to normals not being transformed
correctly.

Unavoidable due to technology limitations.
 -Only joint rotation modifies the vertex normal

Tried some tricks which ultimately did not work.

Normals not transforming based on
translation for the eyes:

Normals not transforming based on
translation for the eyes:

Improved Hair:

Improved Hair:

Improved Hair:

Outsourcing:

JS

Outsourcing Characters:

Turned out to be more work for high quality assets but was
useful for smaller assets
When things did work it allowed us to focus on the more
important stuff
We need to take the time up-front to really evaluate the
companies properly
Communication was tough at times

Conclusion:

Better way to deal with LODs
Possibly get rid of arbitrary mesh
Manage actors in an easier way

 multiple costumes, texture sets, etc..
Reference skinning

figure out a way to reference skinning information so you only
update in one place

Eyes
Eye's still feel creepy at time and don't always match the
environment

Tackling optimization earlier
Find better solution for multiplayer faces and skeleton
variation

Thanks!

Q & A:

Email:
Rich "Custom" Diamant
rich@rd3d.com

Judd "Oiiii" Simantov
juddsim@gmail.com

