Procedural Audio for Video Games:

Are we there yet ?

Nicolas Fournel — Principal Audio Programmer

Sony Computer Entertainment Europe

Overview

What is procedural audio ?

How can we implement it in games ?
Pre-production
Design
Implementation
Quality Assurance

What is Procedural Audio ?

Game Developers Conference

First, a couple of definitions...

Procedural
refers to the process that computes a particular function

Procedural content generation
generating content by computing functions

Procedural techniques in other domains

Landscape generation H . N .‘

* Fractals (terrain)
* L-systems (plants)
* Perlin noise (clouds)

Game Developers Conference
www.GDConf.com

Procedural techniques in other domains

Texture generation
* Perlin noise
* Voronoi diagrams

Game Developers Conference
www.GDConf.com

Procedural techniques in other domains

City creation (e.g. CityEngine)

U

)

4

,, .l.\ ,_,,./ ()
< A N 7}
/MM W\ Y\ Vi
\,\ { _,v ‘.\\ 4
LV WA
\ —
I\ / | :

Game Developers Conference

Procedural techniques in other domains

Demo scene: 64 Kb / 4Kb / 1 Kb intros
kkrieger: 3D first person shooter in 96K from Farbrausch

life: 050

Procedural content in games

A few examples:

Sentinel
Elite
DEFCON
Spore
Love

Present in some form or another in a lot of games

Game Developers Conference

What does that teach us ?

Procedural content generation is used:
due to memory constraints or other technology limitations
when there is too much content to create
when we need variations of the same asset

when the asset changes depending on the game context

What does that teach us ?

Data is created at run-time
Is based on a set of rules

Is controllable by the game engine

Defining Procedural Audio

For sound effects:

Real-time sound synthesis
With exposed control parameters

Examples of existing systems:

Staccato Systems: racing and footsteps
WWISE SoundSeed (Impact and Wind / Whoosh)
AudioGaming

Defining Procedural Audio

For dialogue:

* real-time speech synthesis
e.g. Phonetic Arts, SPASM

* voice manipulation systems
e.g. gender change, mood etc...

Game Developers Conference
www.GDConf.com

Defining Procedural Audio

For music:

Interactive music /
adaptive music

Algorithmic composition

SSEYO Koan, Direct Music

Game Developers Conference

v.GDCont

L

I%l

s 7 1
74 Eile Edit Yew Tools Window Help

=18]x]

Iﬁ‘l»..;j' EIE”— E]g” IChncken sgp: Chicken ~| JLI:I _l [r3000 aﬂl n

B]
= | LTI LT =Ol %
¢_— Demo2 /4 [._ L . lil |’ u- u]]l [l |‘| [
.: v gog‘;:b: r?‘b:::an T Chorts Gioy=C o7 RCas7T Hp L ol - H
e | chickendlp 1: Tempo .00
S1e |~ [& chickennoise | [1:4(d): Sequence i I
4 O Instruments | [1:71): Sequence = I
2 s g’hslm V::;:s 1:2 2): Sequence [
H 3_"71 Chicken 1: 3 (3): Sequence I
8 $ Stylel.stp 1: 5 (5): Sequence I
) B == Stylel! [1: Timesig 14 {
= | idon b ~
] () Pattems 1: SysEx 114 bytes of data. = ‘
L« 2 [y | el |

ForHelp, press F1

-y

wf=l=l=1=1=]=1=]=]=
£u

]

KD

Early forms of Procedural Audio

The very first games were already using PA ! car, [3 voo
CARp 2 2T supio ouT
CAPRy 3 26 EXTIN
Texas Instrument SN76489 CARg 4 25 vee
] . . RES |5 24 PoTX
3 square oscillators + white noise 2 [s 23 porv
. . e . . RMW (T
(BBC Micro, ColecoVision, Mega drive & Sega Genesis) - —
AD 9 20 DS
Al 10 19 D4
General Instrument AY-3-8910 ~ B o
D2
(Intellivision, Vectrex, MSX, Atari ST, Oric 1) as 13 16 b1

GMD |1 15 po

MOS SID (Commodore 64)

3 oscillators with 4 waveforms + filter + 3 ADSR + 3 ring
modulators etc...

Yamaha OPL2 / OPL3 (Sound Blaster) : FM synthesis

Pre-Production

Game Developers Conference

When to use PA ?

Good candidates:

Repetitive (e.g. footstep, impacts)
Large memory footprint (e.g. wind, ocean waves)
Require a lot of control (e.g. car engine, creature vocalizations)

Highly dependent on the game physics (e.g. rolling ball, sounds driven by
motion controller)

Just too many of them to be designed (vast universe, user-defined
content...)

Obstacles

No model is available
don’t know how to do it !
not realistic enough !
not enough time to develop one !

Cost of model is too high and/or not linear

Lack of skills / tools

no synthesis-savvy sound designer / coder
no adequate tool chain

Obstacles

Fear factor / Industry inertia
It will replace me !

It won’t sound good !
If it’s not broken, don’t fix it

Citation effect required

Legal issues
synthesis techniques patented
(e.g. waveguides / CCRMA and before that FM synthesis)

Design

—

Game Developers Conference
www.GDConf.com

Two approaches to Procedural Audio

Bottom-Up:
examine how the sounds are physically produced
write a system recreating them

Top-Down
analyse examples of the sound we want to create
find the adequate synthesis system to emulate them

Or using fancy words...

Teleological Modelling

process of modelling something using physics laws
(bottom — up approach)

Ontogenetic Modelling

process of modelling something based on how it appears /
sounds (top —down approach)

Which one to choose ?

Bottom-up approach requirements:
Knowledge of synthesis

Knowledge of sound production mechanisms (physics, mechanics, animal
anatomy etc...)

Extra support from programmers

Top-down approach usually more suitable for real-time:
Less CPU resources
Less specialized knowledge needed

Ultimately depends on your team skills

Which one to choose ?

Importance of using audio analysis / visualisation software

Basic method:

Select a set of similar samples
Analyse their defining audio characteristics

Choose a synthesis model (or combination of models) allowing you to
recreate these sounds

Procedural Model Example : Wind

Good example of bottom-up versus
top-down design

Computational fluid dynamics to
generate aerodynamic sound

(Dobashi / Yamamoto / Nishita)

v Y

Noise generator and bandpass
filters ()

Gam

1€ Developers

Wind Demo

#¥" Procedural Audio Models

Bubbles Nind | Footsteps Impact

Gustiness esec—CGThE——— (.1000

Vartiation e a—— 05000

Whistiing essssc—-CGCb— (2500

» Play Capture Load Preset Save Preset

P R e
conierence

Monster

Procedural Model Example : Whoosh

Karman vortices are periodically it A
generated behind the object

(primary frequency of the

- %
aerodynamic sound) @ / -
—— flow
Using classic subtractive synthesis Karman vortices -
is cheaper

ldeal candidate for motion controllers

Game Developers Conference

Procedural Model Example :Whoosh

Heavenly Sword:
about 30 Mb of whooshes on disk

= HEAVENLY

about 3 Mb in memory at all times (g S\ \’@FF\D
, Dad i -
C
Recorded whooshes K
4 5
Subtractive synthesis (SoundSeed) n
}
¢ ¢ .
Aerodynamics computations (11
¢ ¢ @

Game Developers Conference

Procedural Model Example
Water / Bubbles

Physics of a bubble is well-known
Impulse response = damped sinusoid
resonance frequency based on radius
Energy loss based on simple thermodynamic laws
Statistical distributions used to generate streams / rain

Impacts on various surfaces can be simulated

G

' I

ime

Bubbles Demo

'6' Procedural Audio Models

Bubble Footsteps

Impact Monster

Bubbles per second -"_ 150

Min radius _ 0.0002 m

radius ® 0.0500m

Rising amplitude r— N R

» Play Capture Load Preset Save Preset

~

'S vonierence

Procedural Model Example :

Object

‘ .

Impulses

Mesh

Excitation

.“.ﬂ!ﬂﬂ'ﬂ!‘d—
zzzr gy «—
ooy «———

R
g==h

>

Mass-spring system

Damped sinusoids

f\Nwe
[

Solids

Modal bank

Game Developers Conference
www.GDConf.com

Procedural Model Example : Solids

Other solutions for the analysis part:

LPC analysis
Source — Filter separation

Spectral Analysis
Track modes, calculate their frequency, amplitude and
damping

Procedural Model Example : Solids

Different excitation signals for:

* Impacts (hitting)

* Friction (scraping / rolling / sliding)

Interface with game physics engine / collision manager

Game Developers Conference
www.GDConf.com

Procedural Model Example : Solids

“Physics” bank for Little Big Planet on PSP:

85 waveforms

60 relatively “complex” Scream scripts
Extra layer of control with more patches
(using with SCEA’s Xfade tool)

Game Developers Conference

Impacts Demo

#¥' Procedural Audio Models

Bubbles Footsteps

>

Variation » _ 4

Size oG — 1 0550

Damping —— D — 0.5750

p Play Capture Load Preset Save Preset

r~

Game Developers Conference

Procedural Model Example : Creature

Physical modelling of the {2 :m ﬂ*”ﬂl ﬂl ﬂl)y

vocal tract (Kelly-Lochbaum

model using waveguides) - m -

Glottal oscillator ’ [

Vocal cords

Game Developers Conference

Procedural Model Example : Creature

Synthasaurus: an animal vocalization synthesizer from the 90s.

Pulse Osc

.
1A=
i
|
.

Freq env

AM amount

i AM Section

Amp env

Gain Control envelopes

!

A

Freq env ﬁ

TV

T
Fear

Turbulence

(Smoothness)

: Biquad
N q
UISQ)—. filter N
Aggression—— g,
Amp env (Dist) § M amount%
/\ﬁ Sine
Osc

% of carr. frcq‘:ng

FM Section

£

> P pulse Ose Vocal Tract
AT g

9

f1

Size Length

all envelopes

Frequency Frequency Amplitude Glottal Pulse Width

U I

p1000][] randomice [randormize

base
A \\
Distortion Distortion Smoothness Amplitude Modulation AM percent

:l_ J | i

100.

Turbulence

—1———] e
__,// paz_] i

Duration Presets (double-click
[J— vocs! Tract Size [— 1
e Tt g et EnE
[ﬁg Yooal Tract Hovement O] S
randomize . DAC On/Off E 1 J‘ i

¥ e [[E—] P-tost ot
e [E—] Po-vocs et o E

Game Developers Conference
www.GDConf.com

Procedural Model Example : Creature

Eye Pet vocalizations: —

Over a thousand recordings of animals
634 waveforms used
In 95 sound scripts

Eye Pet waveforms

¢ ¢ ¢ ¢ UV 9YvduUdw

Synthasaurus

¢ ¢ ¥ U U VWUV Y

Game Developers Conference

Sound texture synthesis / modelling

A sound texture is usually decomposed into:

deterministic events
composed of highly sinusoidal components
often exhibit a pitch

transient events
brief non-sinusoidal sounds
e.g. footsteps, glass breaking...

stochastic background
everything else |
resynthesis using wavelet-tree learning algorithm

Sound texture synthesis / modelling

Example: Tapestrea from Perry R Cook and co.

Transform

Vast frequency-warp and time-stretch
(on sinusoidal tracks)

Wavelet-tree parametric reconstruction
(on stochastic background)
(on transients) Bk N Cabadeg i
Event density and periodicity YR N ¥

— = Synthesize
Sinusoidal resynthesis

Wavelet-tree synthesis
Group/granular modeling

Game Developers Conference
www.GDConf.com

Implementation

Game Developers Conference

Implementation Requirements

Adapted tools

higher-level tools to develop procedural audio models
adapted pipeline

Experienced sound designers
sound synthesis
sound production mechanisms

Experienced programmers

sound synthesis
DSP knowledge

Implementation with Scripting

Current scripting solutions:
randomization of assets
volume / pan / pitch variations
streaming for big assets

Remaining issues:
no timbral modifications
still uses a lot of resources (memory or disk)
not really dynamic

A “simple” patch in Sony
Scream Tool:

11 concurrent scripts

each “grain” has its
own set of
parameters

Implementation with Patching

Tools such as Pure Data / MAX MSP / Reaktor
Better visualisation of flow and parallel processes

Better visualisation of where the control parameters arrive in
the model

Sometimes hard to understand due to the granularity of
operators

A “simple” patch in Reaktor...

Trenm

3]]

{ St Mo B

grer P

Ow. B X8
[» BT 4

) Qe B

e H
Moo B

: 9 tast uset {01

x|

Game Developers Conference

LA Lom

Another solution

Vendors of ready-to-use Procedural Audio models:

easy to use but...

limited to available models

limited to what parameters they allow

limited to the idea the vendor has of the sound

Examples:
Staccato Systems already in 2000...
WWISE SoundSeed series
AudioGaming

Going further...

Need for higher-level tools that let the designer:
create its own model
specify its own control parameters

without having an extensive knowledge of synthesis / sound
production mechanisms

without having to rely on third party models

Importance of audio features extraction

To create models by detecting common features in sounds

To provide automatic event modelling based on sound
analysis

To put the sound designer back in control

Think asset models, not assets

Implementation: Typical modules

Lots of different ways to organize modules, different levels of
granularity

3 main types of modules:
Event generation: probability distributions

Audio synthesis: subtractive, modal, granular, F.M,
waveguides...

Parameter Control : envelope generators, Perlin noise,
excitation modelling (friction, sliding etc...)

Implementation : Interface

Requires an even greater interaction between sound designer,
game designer and programmer

Control parameters can come from a lot of subsystems:
Animation
Physics
Al
Gameplay

Requires a uniform interface with all game subsystems

Implementation : Parameters

You can add all the parameters you want

It's a trap |
Limit the number of parameters
Limit their range

Test the stability of the model early

Implementation : Parameter space

Divide parameter space

to create stable models

Game Developers Conference
www.GDConf.com

Implementation: CPU Usage

The bad news

Highly dependent on model
Even dependent on parameters ! (e.g. number of grains, main pitch)
Non linear models (FOF)

It’s not so bad...

Typical sample playback uses resources also (resampling, filter...)
Some algorithms are not more CPU hungry than a simple EQ

Implementation: CPU Usage

Mitigating factors:

Depends if modular / fixed architecture for a few chosen models
(“interpreted” a la PD, or “compiled”)

LOD: for different sounds and inside the same sound
Dependent on update rate (control signal)

Important to have tools display some metrics about CPU usage in the
tools

Granularity of modules

Quality Assurance

Game Developers Conference

QA: typical sound bugs

The sound effect is not playing
is it loaded ?
is it triggered ?
is it a voice management issue? Not enough free voices?
priority is too low?

The sound effect is not looping
wrong looping points
bad settings (must be flagged as looping ?)
voice cut off by voice manager

QA: more typical sound bugs

Wrong volume / panning:
wrong 3D settings
errors in 3D positioning code ?

The sound is stuck in looping mode:

sfx not stopped
hardware voice not released

Garbage data is played
sample data not correctly loaded / encoded / decoded
something is writing over our data etc...
stuttering = streaming issue

What kind of bugs are they ?

Easily detectable

Mostly quantitative bugs

Do not require specific audio knowledge
Any tester can be assigned

There is a known list of possible causes

QA: PA sound bugs

Synthesis vs. playback: qualitative aspect (sounds like this or
that)

P.A. model more complex and controlled by more subsystems
than sample playback

harder to describe the exact conditions under which a bug occurs
harder to reproduce it

CPU cost not linear: harder to deal with something not
playing...

QA: PA sound bugs

Fixing the issue is harder
Modifying the model may be required

Different structure will not have the same CPU cost or control
parameters

Might bring up new audio glitches

QA: solutions

Education of testers (ideally a specific audio tester)

Testers should know about the audio models or be able to
refer to them

The stability of the model must be tested in the tools as much
as possible

Are we there yet ?

Game Developers Conference

The good news

Some models can be implemented very easily
Impacts / contacts

Footsteps
Air / Water

They offer a lot of advantages compared to static sounds

Procedural audio is not necessarily CPU expensive

The bad news

Not a solution for everything
It is still harder to implement
Mostly due to lack of:
trained sound designers / programmers / testers

adapted tools / run-time
ready-to-use models

Solutions

Get better tools (higher-level, importance of audio features
extraction)

Educate teams across disciplines
This will help the creation of procedural models database

Share models across the industry

Thank you !

Any questions ?

Game Developers Conference
www.GDConf.com

