

Screen Space Fluid
Rendering for Games

Simon Green, NVIDIA

Overview

 Introduction
 Fluid Simulation for Games
 Screen Space Fluid Rendering
 Demo

Introduction

 DirectX 11 and DirectCompute enable
physics effects to be computed and
rendered directly on the GPU

 DirectCompute allows flexible general
purpose computation on the GPU
 sorting, searching
 spatial data structures

 DirectX 11 has good interoperability
between Compute shaders and graphics
 can render results efficiently

Fluid Simulation for
Games
 Fluids are well suited to GPU

 data parallel

 Many different techniques
 Eulerian (grid-based)
 Lagrangian (particle-based)
 Heightfield

 Each has its own strengths and
weaknesses

 To achieve realistic results, games need
to combine techniques

Particle Based Fluid
Simulation
 Smoothed particle hydrodynamics

(SPH)
 Good for spray, splashes
 Easy to integrate into games

 no fixed domain
 particles simple to collide with scene

 Simulation can be provided by
 Physics middleware (e.g. Bullet,

Havok, PhysX)
 or custom DirectCompute or CPU code

Fluid Rendering

 Rendering particle-based fluids is
difficult
 Simulation doesn’t naturally generate

a surface (no grid, no level set)
 Just get particle positions and density

 Traditionally, rendering done using
marching cubes
 Generate density field from particles
 Extract polygon mesh isosurface
 Can be done on GPU, but very

expensive

Screen Space Fluid
Rendering
 Inspired by “Screen Space

Meshes” paper (Müller et al)
 See: van der Laan et al “Screen

space fluid rendering with
curvature flow”, I3D 2009

 Operates entirely in screen-space
 No meshes

 Only generates surface closest to
camera

Screen Space Fluid
Rendering
camera

particles

surface

Screen Space Fluid
Rendering - Overview
 Generate depth image of particles

 Render as spherical point sprites
 Smooth depth image

 Gaussian bilateral blur
 Calculate surface normals and

position from depth
 Shade surface

 Write depth to merge with scene

Screen Space Fluid
Rendering

Depth
Image

Thickness
Image

Background
Image

Depth
Smoothing

Particles

Smoothed
Depth
Image

Surface
Shader

Scene

Final
Shaded
Image

Rendering Particle
Spheres
 Render as point sprites (quads)
 Calculate quad size in vertex

shader (constant in world-space)
 Calculate sphere normal and depth

in pixel shader
 Discard pixels outside circle
 Not strictly correct (perspective

projection of a sphere can be an
ellipsoid)
 But works fine in practice

PSOutput particleSpherePS(
float2 texCoord : TEXCOORD0,
float3 eyeSpacePos : TEXCOORD1,
float sphereRadius : TEXCOORD2,
float4 color : COLOR0)

{
PSOutput OUT;

// calculate eye-space sphere normal from texture coordinates
float3 N;
N.xy = texCoord*2.0-1.0;
float r2 = dot(N.xy, N.xy);
if (r2 > 1.0) discard; // kill pixels outside circle
N.z = -sqrt(1.0 - r2);

// calculate depth
float4 pixelPos = float4(eyeSpacePos + N*sphereRadius, 1.0);
float4 clipSpacePos = mul(pixelPos, ProjectionMatrix);
OUT.fragDepth = clipSpacePos.z / clipSpacePos.w;

float diffuse = max(0.0, dot(N, lightDir));
OUT.fragColor = diffuse * color;

return OUT;
}

Rendering Particle
Spheres 0

1

1

r

Point Sprite Spheres

Sphere Depth

Calculating Normals

 Store eye-space sphere depth to
floating point render target

 Can calculate eye-space position
from UV coordinates and depth

 Use partial differences of depth to
calculate normal
 Look at neighbouring pixels

 Have to be careful at edges
 Normal may not be well-defined
 At edges, use difference in opposite

direction (hack!)

Calculating Normals
(code)

// read eye-space depth from texture
float depth = tex2D(depthTex, texCoord).x;
if (depth > maxDepth) {

discard;
return;

}

// calculate eye-space position from depth
float3 posEye = uvToEye(texCoord, depth);

// calculate differences
float3 ddx = getEyePos(depthTex, texCoord + float2(texelSize, 0)) - posEye;
float3 ddx2 = posEye - getEyePos(depthTex, texCoord + vec2(-texelSize, 0));
if (abs(ddx.z) > abs(ddx2.z)) {

ddx = ddx2;
}

float3 ddy = getEyePos(depthTex, texCoord[0] + vec2(0, texelSize)) - posEye;
float3 ddy2 = surfacePosEye - getEyePos(depthTex, texCoord + vec2(0, -texelSize));
if (abs(ddy2.z) < abs(ddy.z)) {

ddy = ddy2;
}

// calculate normal
vec3 n = cross(ddx, ddy);
n = normalize(n);

ddx

ddy n

Sphere Normals Calculated From Depth

Smoothing

 By blurring the depth image, we
can smooth the surface

 Use Gaussian blur
 Needs to be view-invariant

 Constant width in world space
 -> Variable in screen-space space

 Calculate filter width in shader
 Clamped to maximum radius in screen

space (e.g. 50 pixels) for performance

Sphere Depth

Naively Smoothed Depth

Calculated Normal

Diffuse Shaded Surface

Bilateral Filter

 Problem: we want to preserve the
silhouette edges in depth image
 So particles don’t get blended into

background surfaces
 Solution: Bilateral Filter

 Edge-preserving smoothing filter
 Called “Surface Blur” in Photoshop
 Regular Gaussian filter is based only

on only distance in image domain
 Bilateral filter also looks at difference

in range (image values)
 Two sets of weights

Bilateral Filter Code
float depth = tex2D(depthSampler, texcoord).x;

float sum = 0;
float wsum = 0;
for(float x=-filterRadius; x<=filterRadius; x+=1.0) {

float sample = tex2D(depthSampler, texcoord + x*blurDir).x;

// spatial domain
float r = x * blurScale;
float w = exp(-r*r);

// range domain
float r2 = (sample - depth) * blurDepthFalloff;
float g = exp(-r2*r2);

sum += sample * w * g;
wsum += w * g;

}

if (wsum > 0.0) {
sum /= wsum;

}
return sum;

Note – not optimized!

Sphere Depth

Bilateral Filtered Depth

Diffuse Shaded Surface

Bilateral Filter

 Bilateral filter is not strictly
separable
 Can’t separate into X and Y blur

passes
 Non-separable 2D filter is very

expensive
 But we can get away with

separating, with some artifacts
 Artifacts not very visible once other

shading added

Diffuse Shaded Surface
Using Separated Bilateral Filter

Surface Shading

 Why not just blur normals?
 We also calculate eye-space

surface position from the
smoothed depth
 Important for accurate specular

reflections
 Once we have a per-pixel surface

normal and position, can shade as
usual

Diffuse Shading – dot(N, L)

Wrapped Diffuse Shading – dot(N,L)*0.5+0.5

Specular (Blinn-Phong)

Fresnel
 Surfaces are more reflective at

glancing angles
 Schlick's approximation

 θ is incident angle
 cos(θ) =dot(N, V)

 R0 is the reflectance at normal
incidence

 Can vary exponent for visual effect

Fresnel Approximation

Cubemap Reflection

Cubemap Reflection * Fresnel

Final Opaque Surface with Reflections

Thickness Shading

 Fluids are often transparent
 Screen-space surface rendering

only generates surface nearest
camera
 Looks strange with transparency
 Can’t see surfaces behind front

 Solution – shade fluid as semi-
opaque using thickness through
volume to attenuate color

Generating Thickness

 Render particles using additive
blending (no depth test)
 Store in off-screen render target
 Render smooth Gaussian splats
 or just discs, and then blur

 Only needs to be approximate
 Very fill-rate intensive

 Can render at lower resolution

Volume Thickness

Volumetric Absorption

d

I=exp(-kd)

I=1

 Beer's Law
 Light decays exponentially with distance
 Use different constant k for each color

channel

Color due to Absorption

Background Image Refracted in 2D
tex2D(bgSampler, texcoord+N.xy*thickness)

Transparency (based on thickness)

Final Shaded Translucent Surface

Shadows

 Since fluid is translucent, we
expect it to cast coloured shadows

 Solution - render fluid surface
again (using same technique), but
from light’s point of view

 Generate depth (shadow) map and
color map (thickness)

 Project onto receivers (surface and
ground plane)

Surface Without Shadows

No Shadows

Surface Without Shadows

Shadow Map

With Shadows

Problems

 Only generates surface closest to
camera
 Hidden somewhat by thickness

shading
 Could be correctly rendered using

ray tracing
 Multiple refractions, reflections

 Possible to ray trace using the
same uniform grid acceleration
structure used for simulation
 But still quite slow today

Artifact – can’t see further surfaces through volume

Caustics

 Refractive caustics are generated
when light shines through a
transparent and refractive material

 Light is focused into distinctive
patterns

Caustics

Image by Rob Ireton

Caustics Algorithm

 We use a simple image-space
technique
 Similar to Wyman et al (see refs.)

 For each point in light view,
calculate ray refracted through
surface from light
 uses surface position and normal

 Intersect ray with ground plane
 Render point splats (“photons”)

with additive blending

Caustics Diagram

surface

receiver

light
image plane

Without Caustics

With Caustics

Caustics

 Note - caustics are only cast on
ground plane, not on fluid surface!

 Can perform multiple times with
different indices of refraction to
simulate refractive dispersion (R,
G, B)

 Quite expensive – requires
rendering e.g. 512*512 = 256K
points

Adding Surface Detail

 Surface can be too smooth
 Doesn’t show flow well

 Solution: add noise
 Render spheres again, using 3D

noise texture in object-space
 Moves with fluid

 Store in noise render target
 Can be used during surface shading to

perturb normal

DEMO

Summary

 Particle-based fluids are practical
for use in games using today’s
hardware

 Rendering particle-based fluids can
be simple and fast

Future Work

 Use Compute Shader for more
efficient bilateral blur
 Similar to diffusion DOF

 Polygon mesh collisions using BVH
 Add spray / foam
 Wet maps
 Direct3D 11 sample to be released

in SDK soon

Questions?

Thanks

 Wladimir J. van der Laan, Rouslan
Dimitrov, Miguel Sainz

References
 Robert Bridson, “Fluid Simulation for Computer

Graphics”, A K Peters, 2008
 M. Müller, S. Schirm, S. Duthaler, ”Screen

Space Meshes”, in Proceedings of ACM
SIGGRAPH / EUROGRAPHICS Symposium on
Computer Animation (SCA), 2007

 CORDS, H., AND STAADT, O. 2008. “Instant
Liquids”. In Poster Proceedings of ACM
Siggraph/Eurographics Symposium on Computer
Animation

 Wladimir J. van der Laan, Simon Green, Miguel
Sainz, “Screen space fluid rendering with
curvature flow”, Proceedings of the 2009
symposium on Interactive 3D graphics and
games

 Chris Wyman and Scott Davis. "Interactive
Image-Space Techniques for Approximating
Caustics." ACM Symposium on Interactive 3D
Graphics and Games, 153-160. (March 2006)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Introduction
	Fluid Simulation for Games
	Particle Based Fluid Simulation
	Slide Number 7
	Fluid Rendering
	Screen Space Fluid Rendering
	Screen Space Fluid Rendering
	Screen Space Fluid Rendering - Overview
	Screen Space Fluid Rendering
	Rendering Particle Spheres
	Rendering Particle Spheres
	Slide Number 15
	Slide Number 16
	Calculating Normals
	Calculating Normals (code)
	Slide Number 19
	Smoothing
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Bilateral Filter
	Bilateral Filter Code
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Bilateral Filter
	Slide Number 31
	Surface Shading
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Fresnel
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Thickness Shading
	Generating Thickness
	Slide Number 46
	Volumetric Absorption
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Shadows
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Problems
	Slide Number 58
	Caustics
	Caustics
	Caustics Algorithm
	Caustics Diagram
	Without Caustics
	With Caustics
	Caustics
	Adding Surface Detail
	Slide Number 67
	Slide Number 68
	Slide Number 69
	DEMO
	Summary
	Future Work
	Questions?
	Thanks
	References

