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Introduction

 DirectX 11 and DirectCompute enable 
physics effects to be computed and 
rendered directly on the GPU

 DirectCompute allows flexible general 
purpose computation on the GPU
 sorting, searching
 spatial data structures

 DirectX 11 has good interoperability 
between Compute shaders and graphics
 can render results efficiently



Fluid Simulation for 
Games
 Fluids are well suited to GPU

 data parallel

 Many different techniques
 Eulerian (grid-based)
 Lagrangian (particle-based)
 Heightfield

 Each has its own strengths and 
weaknesses

 To achieve realistic results, games need 
to combine techniques



Particle Based Fluid 
Simulation
 Smoothed particle hydrodynamics 

(SPH)
 Good for spray, splashes
 Easy to integrate into games

 no fixed domain
 particles simple to collide with scene

 Simulation can be provided by
 Physics middleware (e.g. Bullet, 

Havok, PhysX)
 or custom DirectCompute or CPU code





Fluid Rendering

 Rendering particle-based fluids is 
difficult
 Simulation doesn’t naturally generate 

a surface (no grid, no level set)
 Just get particle positions and density

 Traditionally, rendering done using 
marching cubes
 Generate density field from particles
 Extract polygon mesh isosurface
 Can be done on GPU, but very 

expensive



Screen Space Fluid 
Rendering
 Inspired by “Screen Space 

Meshes” paper (Müller et al)
 See: van der Laan et al “Screen 

space fluid rendering with 
curvature flow”, I3D 2009

 Operates entirely in screen-space
 No meshes

 Only generates surface closest to 
camera
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Screen Space Fluid 
Rendering - Overview
 Generate depth image of particles

 Render as spherical point sprites
 Smooth depth image

 Gaussian bilateral blur
 Calculate surface normals and 

position from depth
 Shade surface

 Write depth to merge with scene
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Rendering Particle 
Spheres
 Render as point sprites (quads)
 Calculate quad size in vertex 

shader (constant in world-space)
 Calculate sphere normal and depth 

in pixel shader
 Discard pixels outside circle
 Not strictly correct (perspective 

projection of a sphere can be an 
ellipsoid)
 But works fine in practice



PSOutput particleSpherePS(
float2 texCoord      : TEXCOORD0,
float3 eyeSpacePos   : TEXCOORD1,
float  sphereRadius  : TEXCOORD2,
float4 color         : COLOR0)

{
PSOutput OUT;

// calculate eye-space sphere normal from texture coordinates
float3 N;
N.xy = texCoord*2.0-1.0;
float r2 = dot(N.xy, N.xy);
if (r2 > 1.0) discard;   // kill pixels outside circle
N.z = -sqrt(1.0 - r2);

// calculate depth
float4 pixelPos = float4(eyeSpacePos + N*sphereRadius, 1.0);
float4 clipSpacePos = mul(pixelPos, ProjectionMatrix);
OUT.fragDepth = clipSpacePos.z / clipSpacePos.w;

float diffuse = max(0.0, dot(N, lightDir));
OUT.fragColor = diffuse * color;

return OUT;
}
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Point Sprite Spheres



Sphere Depth



Calculating Normals

 Store eye-space sphere depth to 
floating point render target

 Can calculate eye-space position 
from UV coordinates and depth

 Use partial differences of depth to 
calculate normal
 Look at neighbouring pixels

 Have to be careful at edges
 Normal may not be well-defined
 At edges, use difference in opposite 

direction (hack!)



Calculating Normals 
(code)

// read eye-space depth from texture
float depth = tex2D(depthTex, texCoord).x;
if (depth > maxDepth) {

discard;
return;

}

// calculate eye-space position from depth
float3 posEye = uvToEye(texCoord, depth);

// calculate differences
float3 ddx = getEyePos(depthTex, texCoord + float2(texelSize, 0)) - posEye;
float3 ddx2 = posEye - getEyePos(depthTex, texCoord + vec2(-texelSize, 0));
if (abs(ddx.z) > abs(ddx2.z)) {

ddx = ddx2;
}

float3 ddy = getEyePos(depthTex, texCoord[0] + vec2(0, texelSize)) - posEye;
float3 ddy2 = surfacePosEye - getEyePos(depthTex, texCoord + vec2(0, -texelSize));
if (abs(ddy2.z) < abs(ddy.z)) {

ddy = ddy2;
}

// calculate normal
vec3 n = cross(ddx, ddy);
n = normalize(n);

ddx

ddy n



Sphere Normals Calculated From Depth



Smoothing

 By blurring the depth image, we 
can smooth the surface

 Use Gaussian blur
 Needs to be view-invariant

 Constant width in world space
 -> Variable in screen-space space

 Calculate filter width in shader
 Clamped to maximum radius in screen 

space (e.g. 50 pixels) for performance



Sphere Depth



Naively Smoothed Depth



Calculated Normal



Diffuse Shaded Surface



Bilateral Filter

 Problem: we want to preserve the 
silhouette edges in depth image
 So particles don’t get blended into 

background surfaces
 Solution: Bilateral Filter

 Edge-preserving smoothing filter
 Called “Surface Blur” in Photoshop
 Regular Gaussian filter is based only 

on only distance in image domain
 Bilateral filter also looks at difference 

in range (image values)
 Two sets of weights



Bilateral Filter Code
float depth = tex2D(depthSampler, texcoord).x;

float sum = 0;
float wsum = 0;
for(float x=-filterRadius; x<=filterRadius; x+=1.0) {

float sample = tex2D(depthSampler, texcoord + x*blurDir).x;

// spatial domain
float r = x * blurScale;
float w = exp(-r*r);

// range domain
float r2 = (sample - depth) * blurDepthFalloff;
float g = exp(-r2*r2);

sum += sample * w * g;
wsum += w * g;

}

if (wsum > 0.0) {
sum /= wsum;

}
return sum;

Note – not optimized!



Sphere Depth



Bilateral Filtered Depth



Diffuse Shaded Surface



Bilateral Filter

 Bilateral filter is not strictly 
separable
 Can’t separate into X and Y blur 

passes
 Non-separable 2D filter is very 

expensive
 But we can get away with 

separating, with some artifacts
 Artifacts not very visible once other 

shading added



Diffuse Shaded Surface
Using Separated Bilateral Filter



Surface Shading

 Why not just blur normals?
 We also calculate eye-space 

surface position from the 
smoothed depth
 Important for accurate specular 

reflections
 Once we have a per-pixel surface 

normal and position, can shade as 
usual









Diffuse Shading – dot(N, L)



Wrapped Diffuse Shading – dot(N,L)*0.5+0.5



Specular (Blinn-Phong)



Fresnel
 Surfaces are more reflective at 

glancing angles
 Schlick's approximation

 θ is incident angle
 cos(θ) =dot(N, V)

 R0 is the reflectance at normal 
incidence

 Can vary exponent for visual effect 



Fresnel Approximation



Cubemap Reflection



Cubemap Reflection * Fresnel



Final Opaque Surface with Reflections



Thickness Shading

 Fluids are often transparent
 Screen-space surface rendering 

only generates surface nearest 
camera
 Looks strange with transparency
 Can’t see surfaces behind front

 Solution – shade fluid as semi-
opaque using thickness through 
volume to attenuate color



Generating Thickness

 Render particles using additive 
blending (no depth test)
 Store in off-screen render target
 Render smooth Gaussian splats
 or just discs, and then blur

 Only needs to be approximate
 Very fill-rate intensive

 Can render at lower resolution



Volume Thickness



Volumetric Absorption

d

I=exp(-kd)

I=1

 Beer's Law
 Light decays exponentially with distance
 Use different constant k for each color 

channel



Color due to Absorption



Background Image Refracted in 2D
tex2D(bgSampler, texcoord+N.xy*thickness)



Transparency (based on thickness)



Final Shaded Translucent Surface



Shadows

 Since fluid is translucent, we 
expect it to cast coloured shadows

 Solution - render fluid surface 
again (using same technique), but 
from light’s point of view

 Generate depth (shadow) map and 
color map (thickness)

 Project onto receivers (surface and 
ground plane)





Surface Without Shadows

No Shadows



Surface Without Shadows

Shadow Map



With Shadows



Problems

 Only generates surface closest to 
camera
 Hidden somewhat by thickness 

shading
 Could be correctly rendered using 

ray tracing
 Multiple refractions, reflections

 Possible to ray trace using the 
same uniform grid acceleration 
structure used for simulation
 But still quite slow today



Artifact – can’t see further surfaces through volume



Caustics

 Refractive caustics are generated 
when light shines through a 
transparent and refractive material

 Light is focused into distinctive 
patterns



Caustics

Image by Rob Ireton



Caustics Algorithm

 We use a simple image-space 
technique
 Similar to Wyman et al (see refs.)

 For each point in light view, 
calculate ray refracted through 
surface from light
 uses surface position and normal

 Intersect ray with ground plane
 Render point splats (“photons”) 

with additive blending



Caustics Diagram

surface

receiver

light
image plane



Without Caustics



With Caustics



Caustics

 Note - caustics are only cast on 
ground plane, not on fluid surface!

 Can perform multiple times with 
different indices of refraction to 
simulate refractive dispersion (R, 
G, B)

 Quite expensive – requires 
rendering e.g. 512*512 = 256K 
points



Adding Surface Detail

 Surface can be too smooth
 Doesn’t show flow well

 Solution: add noise
 Render spheres again, using 3D 

noise texture in object-space
 Moves with fluid

 Store in noise render target
 Can be used during surface shading to 

perturb normal









DEMO



Summary

 Particle-based fluids are practical 
for use in games using today’s 
hardware 

 Rendering particle-based fluids can 
be simple and fast



Future Work

 Use Compute Shader for more 
efficient bilateral blur
 Similar to diffusion DOF

 Polygon mesh collisions using BVH
 Add spray / foam
 Wet maps
 Direct3D 11 sample to be released 

in SDK soon



Questions?



Thanks

 Wladimir J. van der Laan, Rouslan 
Dimitrov, Miguel Sainz
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