A
>

AVALANCHE STUDIOS

Physics Meets Animation
Character Stunts in Just Cause 2

John Fuller — System Architect, Physics
Andreas Nilsson - Lead Gameplay Programmer



Talk Overview

Motion Control
Animation + Physics +IK
Parametric Animation

Effectors / Manipulators



Just Cause 2 : Requirements

* Huge open world

 Fast-paced, over-the-top action

* Reactive environment

* High level of responsiveness
 Large number of game mechanics

 Large number of vehicles

PLAYS TRARATIOM 3

_~
L cidosy

Freedom!



Concept Video

videomatic 060918 01 xvid.av



Approach

« Small animation budget
» Large feature set

« Small animation staff budget

Procedural animation?

Small

Large

= Tiny






Motion Control

» Started with badly structured character control system
 Slow and cumbersome to create behaviors
* First : decoupled root motion from posture update

» Refactored functional elements into ‘Motion States’



Fast-paced
Motion Transitions



Motion States - Root Node Update

 Desired motion:
* Procedurally driven motion
* Animation driven motion
« Attached motion
 External influences:
» Collision response

» Gravity




Attached Motion

 Attached characters live in parent’s local space
» Character movement changes relation between parent and child

* Animated root node translation and rotation affects offset

o

A

‘{.A \‘\’l



Scaling for fixup / alignment

» Scale motion to realign for specific targets
* Introduces two constraints on the assets
* Low curvature within the translation
* No translation during contact with parent

« Animator has control over timing and acceleration



Rigid Body Proxy

* Physical effects applied in a controllable way
» Applying impulses to a ragdoll : less controllable
» Single rigid body represents entire character

» Can be constrained to other objects







Custom Transition States N

» Some transitions needed special care

* Transition states bridge between motion states with different velocities
» Applies custom velocities and impulses

» Crucial to fluid gameplay

» These are context dependent



~ Animation / it
Physics / ol
1K |



Pre-visualization




Ragdoll / Animation / IK Blending

Systems influencing pose:

*Ragdoll
*Cling animations
*Hand and foot IK

*Aim Constraints




Control Flow @




Pose Driving

Drive ragdoll towards animation pose (using impulses / joint motors)

*Not a keyframed ragdoll - can still respond to collisions






Transition from Ragdoll to Animated @

1. Below a certain velocity,
transition to Pose Matching state

2. Compare orientation with a
number of Get-Up start frames

3. Drive ragdoll towards the closest
start frame

4. When close to target pose, start
the animation and blend to it



Spinning Ragdolls

Needed Over-the-top, extreme reactions to explosions
1. Applied impulses to torso and hips
-> Very ragdolly ©

-> QOccasional instability (stretching)

2. Evenly spread impulses on all bones
-> Lots of translation, not much spin
-> Synchronized swimmers (in-sync flailing animation)

-> Reminiscent of sprites!



Spinning Ragdolls

3. Vector field
-> (Get an axis perpendicular to explosion
-> Evenly spread impulses to achieve rotation

-> Still have synchronized swimmers

4. Randomness

-> Vary the axis within a 45 degree cone

Note: Also drive towards flail animation







Authoring Ragdoll / Character setup

AFSM

Character
Config

Ragdoll Files



Authoring Ragdoll / Character setu

<object name="Setting HangOnVehicle":
<walue nawe="name" type="string">HangOn¥ehicle</wvalues
<value narwe="ragdoll file id" type="string':ragdell file 1</valuex
<object name="parameters":>
<value name="controller type" type=“string“>RIGID_BDDI</value>
<value name="map anim to physics" type="int"'>1</values
<value name="map physics to anim" type="int">1</value:>
<value name="hlend speed" type="float">2</valuex
<value narwe="blend weight" type="float":0</value>
<value name="tau" type="£loat":>0,95</values>
<value nawe="damping" type="float":>0.45</value>
<value name="proportional recovery velocity" type="float":>10.0</valuex
<value name="constant recovery velocity" type="float">4.0</value>
<value nawe="max force" type="float":>10000.0</values

<value name="hierarchy gain" type="float":>0.01</valuex>

<value name="velocity damping" type="float">0.0</valus>
<value name="acceleration gain' type="float">0.35</value>
<value name="velocity gain" type="float":>0.35</value:>
<value name="pogition gain' type="float">0.35</valus>
<value name="position max linear velocity! type="float">1000.0</value>
<value name="position max angular velocity" type="float":>1000.0</valuex
<value name="snap gain' type="float">0.25< valus>
<value name="snap max linear velocity" type="float">0.1</values>
<value name="snap max angular velocity" type="float":0.1</valuex
<value name="snap max linear distance" type="float">0.01</valus>
<value name="snap max angular distance" type="float">0.01</value>
</object:
<object nsme="keyframed parts">
<value name="part_ 1" type=“string">ragdull_LeftHand</value>
<value name="part 3" type="string":ragdoll LeftFoot</value:>
<value name="part 4" type=“string“>ragdull_RightFuot<£value>
</obhject>
</ohject:




Authoring Ragdoll / Character setup

Anecdote:
* Rico freefall colliding state had artifacts
 Technical Animator diagnosed problem:

« conflicting animation and constraints
» Tweaked ragdoll constraint limits
* Created a new Character Configuration

* Changed ‘Falling’ state to point to this character configuration

*Rico’s death sequence reworked in one morning, no coders
involved




’ Physics Driven
Animation



Ragdolls and parent motion

Ragdoll pros
* Feeling of presence

* Collision handling

Ragdoll cons
* Feeling of intention and awareness

 Poor momentum transfer




-~

Traditional Link Between Animation and Physics »

* Physics Event -> Animation Transition

* Results in:
* Series of discrete animation states and transitions
* Recognizable state machine style
* Repetitive timing and movement patterns

* Artifacts typically combated with:

« Shorter animations, more transitions, more complex trees?

But ... neither physics nor character behavior is discrete!!!



Parametric Animations

« Commonly used for navigation on ground?

* Smooth dynamic motion

Input Parameter

Velocity

Blend Node

Run
/1 Forward

A4 Run Left

=1 Run Right

WELL
Forward

N Walk Left

N walk Right

—



Physics Driven Animation

» Parameterize blend nodes with parent’s motion
* Feed in continuous values to act as inputs to single states

* Result? Non-repetitive, smooth motion




Ragdoll Only



)

v

How does it work? \

* All poses are baked into two animations
» Upper row from left to right

 Lower row from left to right

» Middle row is the result of blending

* Project parent’s angular velocity onto..
 X-axis to determine blend weight

* Y-axis to determine sample time




...One Step Further

» Multiple parameterizations create variation
» Parachuting has the following inputs:

* Acceleration, velocity and gamepad input
* Riding motorcycle has the following inputs:

» Suspension length rate of change

» Speed

* Orientation

» Gamepad input



Physics Driven Animation



‘Effectors /
Manipulators .



Animation Driven Impulses

» Wanted data driven physical effectors

« Animations contain annotations, e.g:
DOWNWARD-IMPULSE-LIGHT
DOWNWARD-IMPULSE-HEAVY

* Impulses applied to parent or target body

 E.g. foot down event, enter vehicle, some cling positions



Motorbike Tilt

* Let the player feel in control of the driver

» Forward-back controls player lean ... C.O.M. shift

» Re-align constraint limits on front and back

» Makes it easier to tip backwards

* Also allows for leaning forwards / backwards in air



The Almighty Grapple

» Physical constraint

» Can ‘tie’ nearly any two physics objects together

» Custom impulses applied: e.g. yanking, wall tether, dual tether two
enemies, etc.

» Shorten the constraint to draw things together






e

Findings




Problems we faced / Tips

Ragdoll Stability:

* Requires constant maintenance

« Animation poses must not violate constraint limits

» Use different ragdolls to suit the context

* QA unfamiliar with problem domain

» Monitor edge cases : have a fallback



Problems we faced / Tips

Ragdoll Driving:
* Varied quality at different speeds

* Tried varying driving params with speed, ran out of time

Motion:

* Transitions between Motion States took a lot of work



Problems we faced / Tips

Blending:
* Noisy physics signal - filter

* Blending away from a parametric blend node can be difficult

Dependencies:

« Difficult to tweak without side effects



Important decisions we made @D

- We separated motion state from pose generation
* Many states had different control flow for IK / Animation / Physics.
*\We were able to vary this control flow for each state.

*Not quite a dynamic ‘shader pipeline’, but flexible

» Exposed elements of the character configuration to content creators



Advantages of using Physics

» Cheap variation - few added animations

* Rich context data to drive animation blending

» Collision response enriches feeling of interaction and presence

* Fun emergent gameplay, e.g. grapple



Disadvantages of using Physics

» Requires constant maintenance and tuning

 Hard to preview final visual outcome

* Requires expertise across the organization, e.g. game designers,
animators, QA



Thanks!

Just Cause 2 Team

Avalanche Studios

Eidos
Square Enix

Havok



e




