
Advanced Tool Writing for Character TD’s – Judd Simantov 1

Advanced Tool Writing for Character TD’s – Judd Simantov 2

Table of Contents:

• Tool Writing Fundamentals.

• Maya specific development:
o MEL .vs API

• MEL:
o Custom Viewport Pop-ups.
o OptionVar.

o Recursive Functions.

o Custom Pick-Walk.

o ScriptJobs.
o Arrays passed by reference.

• MEL UI:
o Implementing Drag and Drop.
o Defining and Using Templates.

• API:
o Introduction to the Maya API.
o API Commands:

� Closest Point on Mesh.
� Shape Snap.

o API Nodes:
� Poly Face Node.

o API Locators:
� Poly Face Locator.

• Conclustion.

Advanced Tool Writing for Character TD’s – Judd Simantov 3

Tool Writing Fundamentals:

Planning and Design:

Often when people start out developing tools, they tend to overlook the importance of planning before
actually starting any coding. As the project or tool becomes bigger and more complex, planning becomes
increasingly important. Here as some pointers to take into consideration before actually coding.

Write things down:

It’s very important to write things out on paper first. It’s impossible to maintain all the
dependencies and possible scenarios in your head. Also by writing things down and seeing the
bigger picture, it makes it easier to anticipate potential problems. You’ll also find the actual coding
part is a lot easier and faster when you have a blueprint to follow.

Get input from user:

Before writing a tool always acknowledge whom you are writing the tool for and get their opinion
on how they intend to use it and if they will even use it at all. User input is even important for
certain things that would almost seem trivial. Such things can include the naming and placement
of interface elements or the look of manipulators and custom locators.

Work responsibly:

Always keep in mind that you are working in a production enviroment and the longer it takes you
to get a tool up and running, the more it’s going to cost the company. It’s important that you build
a solid tool that fulfills all the necessary expectations, however you should be wary of trying to
implement too many bells and whistles. Also sometimes adding too many features and making a
tool too “technical” can be overwhelming for user(s). Tools also tend to go through several
changes during its lifespan and making them too complex can make change increasingly difficult.

It’s important that you first lock down the essentials and allow people to start testing the tool. Then
at a later stage revisit the “bells and whistles”. Getting input from the user(s) and finding out what
are the essentials comes into play here once again. In production, saving time is incredibly
important and writing tools that cater to every possibility can definitely come back to haunt you.

Advanced Tool Writing for Character TD’s – Judd Simantov 4

Coding Essentials:

There are certain universal “coding” rules that you should try to abide by. For the most part they will
hopefully make your life as well as your colleague’s lives a lot easier both in the short term and long term.
I will outline the few that I think are of the highest priority.

Commenting:

Commenting code at first seems like a complete waste of time. You wrote the code and therefore
you will have no problem understanding it. Wrong! Spending several minutes a day to comment
your code appropriately can save both you and your colleagues days of troubleshooting and
aggravation. If you are going to change someone else’s code make sure you comment your
changes and specify your name. This way if there are any problems or modifications needed, the
other developers can consult with you.

Try to make comments practical and useful. Translating the code into a somewhat grammatical
English format is pretty useless to other developers, as they would be able to gather the same
information from just reading the code. Use comments in areas that are complex and would
require an overall breakdown as well as to explain things that could be potentially ambiguous.

Modularity:

When writing tools, try to break things up into functions that might be called several times or that
is a big chunk of the overall operation. There are several major advantages in modularity, some
include not having to rewrite code unnecessarily, your code becomes a lot more manageable
when trying to modify it, when changes are made in one place they will propagate through the rest
of the program if implemented correctly and it also helps to understand the code when revisiting it
at a later stage. Keeping your code modular is important, but it can also be overdone. Try to find a
good medium between modularity and practicality.

Advanced Tool Writing for Character TD’s – Judd Simantov 5

Maya Specific Development:

Maya has two primary tool development languages available to the user. Maya Embedded Language
(MEL), which is Maya’s native scripting language, as well as the Maya Application Programming Interface
(API), which allows you to develop your own custom plug-ins. The next section will discuss both these
languages and their application in relation to tool development.

Having the tools to write the tools:

Writing efficient tools not only requires a problem-solving mind but also requires that the
developer knows what tools the language has to offer and also understands how to use these
tools to their benefit. If you don’t know any of the MEL commands and don’t take the time to
browse the documentation, it will make your life a nightmare. I can’t emphasize enough how much
you can learn from reading the documentation.

Maya’s API is a C++ API. If you want to develop plug-ins with the API, you must have a good
knowledge of C++ and object oriented programming first and foremost. The API is just a set of
C++ classes that gives you a whole bunch of function calls that you can use as you choose to. It’s
important to understand that the API does not give you access to Maya’s core implementation;
rather it is just an interface to the implementation and therefore you only have access to that
which Maya grants you.

Primary differences between MEL and the API:

First and foremost, MEL is a scripting language and the API is a C++ interface to Maya
functionality. As most people already know, MEL is a lot easier to learn and apply than the API is.
MEL is more procedural (a series of procedures/functions that are in the scope of a program) and
the API is object oriented (program is comprised of objects/units that make up the program and
it’s functionality). Both explanations given above are very concise and these concepts are out of
the scope of this talk, however it would definitely be worthwhile looking up more elaborate
definitions on both of these programming paradigms and familiarizing yourself with their
differences.

MEL does not need to be compiled and plug-ins do. Therefore, MEL is executed directly in Maya
and the API requires an external compiler such as Microsoft Visual Studio .NET which will then
compile a “.mll” plug-in file that is loaded into Maya. The API also offers you more access to
internal Maya functionality. One of the other major advantages to using a compiled plug-in versus
an executable MEL script is that plug-ins are significantly faster, especially when dealing with
large iterative processes and complex algorithms. One major disadvantage of using the API is
that it is operating system dependant and version dependant. MEL however, for the most part is
not and although sometimes there might be some discrepancies it usually holds up fine between

Advanced Tool Writing for Character TD’s – Judd Simantov 6

versions and operating systems.

MEL can be called from the API using the MGlobal class and the executeCommand() function.
The function does return the results from the MEL command that you can then use in your plug-in.
A quick example is shown below.

Conclusion:

Developing good tools is more than just having a great idea and writing it down on paper. You
need to have the appropriate knowledge of certain aspects in order to write the tools in the most
efficient and practical manner. Having a solid programming foundation as well as a good
understanding of the respective language is essential. What loops does MEL support? Can you
return arrays? What data types does it support…etc? Once you have gained a solid foundation in
MEL and C++ you will start to delve into more complex areas such as data structures,
algorithms…etc. The entire process is progressive, so it’s not to say that you shouldn’t get started
until you’ve mastered a 900 page C++ book, but just keep in mind that the more you understand
about the language and the basics, the more capable you will be of writing solid tools.

Advanced Tool Writing for Character TD’s – Judd Simantov 7

Maya Embedded Language (MEL):

Custom Viewport Pop-ups

Creating pop-ups for UI elements is pretty straightforward; however, creating them in the viewport and
eliciting different results depending on the object under the mouse pointer is slightly more complicated.
We will also then tag objects with an attribute that will hold a command. This way you can give each
object a specific command that is called when the menu item is clicked.

Advanced Tool Writing for Character TD’s – Judd Simantov 8

First off you will need to edit one of Maya’s MEL scripts, which is called dagMenuProc.mel. This file can
be found in:

../Alias/Maya6.5/scripts/others/dagMenuProc.mel - Maya 6.5
../Alias/Maya7.0/scripts/others/dagMenuProc.mel - Maya 7.0

In this file you will find a global procedure called dagMenuProc(string $parent, string $object);

This procedure is called when you right click in the viewport and it is passed two very important
arguments. The first argument is named $parent and the second is named $object. $parent is basically
the parent menu you that you will be attaching your menuItems to and $object is the object that is under
the mouse pointer.

All we are going to do is add one of our procedures to the dagMenuProc() and pass our procedure the
$parent and $object arguments, so it can process it with whatever operations we decide.

The gdcAddPopUpMenu() procedure will basically add the menuItem to the $parent menu. The
menuItem added will contain a specific command gdcReadPopUpCmd() that will read a string off the
attribute on the object and execute the command. The overall idea is to give each object it’s own specific

Advanced Tool Writing for Character TD’s – Judd Simantov 9

command that is attached to the object, so when the dagMenuProc() procedure gives us the object
name under the mouse pointer, we can check that object for it’s command attribute and execute
whichever command is associated with the object.

As you’ll see in the code below, the first portion of the code list’s all the attributes with a _gdcCmd suffix.
This is a naming convention giving to the attribute and used to detect popup commands on an object,
therefore preventing clashes with any other custom attributes. It’s not important what suffix you use here
as long as it’s unique and consistent. The prefix part of the attribute name will then be used as the menu
name. So when you tokenize (split up) the attribute name, the first part will be passed as the name of the
command and the second part will be used to identify the attribute as a popup command attribute.

Advanced Tool Writing for Character TD’s – Judd Simantov 10

Because of the function used to derive the name of the command, the name must only contain
alphabetical characters and cannot contain any spaces or underscores. This is a pretty easily solvable
problem, however I will be keeping examples as simple as possible.

Below is the basic procedure that adds the attribute and the command to the object. This process is
made a lot easier through the interface I have supplied, but it gives you a look under the hood at what is
going on. The full MEL script for this is called gdcCreatePopUpAttr.mel and is supplied with this paper.

Advanced Tool Writing for Character TD’s – Judd Simantov 11

Using customized pop-ups that are associated with objects can have many advantages and allow
animators to access MEL functions without the need of a bulky interface that takes up screen real estate.
Some common examples of pop-ups that have proven to be useful, is for toggling visibility of object
groups or to launch interfaces that are associated with specific objects. The possibilities are really
endless.

What is an optionVar and how to use it:

The optionVar is something that I’m sure most people know about, but it’s so useful that it’s worth
mentioning for those that might not. When wanting to store information on a per-user basis that is
consistent through Maya sessions and scenes, optionVars are ideal. Without optionVars you will most
likely write the information out to ASCII files and read them in accordingly. An optionVar works similarly
to global variables, with the exception that they are consistent through Maya sessions. So if you close
Maya and re-open it, your optionVar is maintained. An optionVar can also be used as an array, so you
can pass one optionVar multiple entries and return them to an array data type.

Below are some examples of optionVar being used. Check the Maya Documentation for all its supported
commands.

The most useful place for optionVars is to store UI preferences, although with time you’ll probably find
hundreds of creative uses for it.

Advanced Tool Writing for Character TD’s – Judd Simantov 12

Recursive Directory Search:

Often when writing tools that need to search a directory or it’s sub-directories for files, recursively
searching through directories can be challenging. This is a very short section explaining how to
accomplish this.

The following procedure will take a path and file extension as arguments and return a string array that
contains the full path for any file that has the given extension.

Advanced Tool Writing for Character TD’s – Judd Simantov 13

The most important piece of code here is the first loop that keeps adding folders. This loop is basically
saying start looping the $folders array and keep looping it until the loop reaches the end. On every
iteration of the loop, get all the files and folders in the directory, then filter out files by testing for
directories only and if a directory is found append the found directory string with the current directory
string and add it to the $folders array. Now the loop will repeat this step until there are no more
directories added. This is the foundation for any recursive looping and as you can see once you’ve
written it and grasped the concept, it’s pretty straightforward.

Custom Pick Walk:

Maya by default has built in pick walk that walks the hierarchy of nodes when using the up and down
keys or cycles through the DAG (Directed Acyclic Graph) when using the left and right keys. Both of
these really don’t serve much purpose to animators, especially when you consider the complexity of
modern rig setups and the hierarchies. The solution is to establish your own relationship between objects
and define your own pick walk script. The best way to handle the relationship between the object and its
target is to use message attributes and then read the connections between the objects. This way if the
names change the connection is maintained and there are no hard-coded names.

The example I’ll give will be pretty basic and will serve as the foundation for the implementation. Take this
and extend on it to create a pick walk system that works best for your pipeline.

We will only implement “up” and “down” which will walk up and down a defined control hierarchy,
however you should also implement “left” and “right” which will walk between left and right of
corresponding controls. This is my suggestion on how to use it, but you are free to define whatever
relationship works best for you.

The procedure below basically takes three arguments; the direction, the source object and the target
object. As you can see there are a lot of error checks and existence checks. These checks are time
consuming initially but will save you huge amounts of time in the long run when things error out and you
are trying to debug the problem.

Advanced Tool Writing for Character TD’s – Judd Simantov 14

The next procedure is what actually reads the connection between objects and walks the connection to
pick the corresponding object. This function will be placed under a hotkey with the direction as the
argument for that specific hotkey. E.g. gdcReadPickWalk “up”;

Advanced Tool Writing for Character TD’s – Judd Simantov 15

This is the general foundation for pick walk and will be used to demonstrate script jobs in the next
example. I urge you to take this as a “base” for developing something that works best for you. For my
own full pledged system I’ve integrated additive pick walk selection, destination switchers to allow for
multiple targets that are switched between based on a condition or set driven key, as well as a few other
nice features.

Script Jobs:

Script Jobs are becoming more commonly used and primarily serve as a monitoring mechanism that will
execute a script based on a certain condition. The list of conditions is extremely extensive, but can be
found in the documentation. An example where a script job is often used is to execute a command when
the selection changes. This way you can execute different scripts depending on the object selected. As
with the pop-up example, the best way to tag objects for different results is using custom defined
attributes.

This example used will make use of the pick walk implementation. As you pick walk through objects the
control curve for that specific object will become visible and the rest will become invisible. I am not
recommending this as a way to set up your rigs, but merely using it as the foundation for an example of a
script job implementation. Hopefully the concept will spark some much more useful and applicable ideas.

Advanced Tool Writing for Character TD’s – Judd Simantov 16

The way the script works is you select a group of controls that you wish to apply the functionality of the
script job to. The way the script job will identify these controls is by tagging each control with a Boolean
attribute called “gdc_sjVisCtrl”. Once all the objects have been tagged, the script job will be initialized.
Script jobs return an integer value, which serves as an identification number known as a “job number”
and can be used to edit or delete existing script jobs. The first flag we pass is the –event flag. This flag
takes two arguments; the first is the event that should trigger the script. In our example that event is
called “SelectionChanged”. You can get a complete list of events either by checking the MEL command
documentation or by executing the following script in the command line:

scriptJob –listEvents;

The second argument passed to the “-event” flag is the name of the procedure that should be executed
when the selection changes. We also use the “-killWithScene” flag, which will basically delete the script
job when the scene closes. If you do not specify this flag the script job will continue to run in memory until
Maya is closed. There are many cases where you want the script job to not be scene specific, so you
would just remove the “-killWithScene” flag.

Next we’ll review the procedure gdcToggleVisibility() that is called by the script job whenever the user’s
selection changes.

As you can see the procedure is fairly self-explanatory, so I wont go into too much detail. The procedure
will query the current selection and check if it is tagged with the “gdc_sjVisCtrl” attribute. If it is, the
control’s visibility will be set to 1. The procedure will then loop all DAG nodes in the scene that contain
the “gdc_sjVisCtrl” attribute and set their visibility to 0.

Advanced Tool Writing for Character TD’s – Judd Simantov 17

Arrays are passed by reference in MEL:

This title might seem a little confusing to people that don’t have much programming experience and don’t
really deal with the memory management of their declared variables in a programming language such as
C++.

Essentially there are two ways to pass a variable to a function, the first is by value and the second is by
reference. When you pass a variable by value, a copy of the variable is created when you enter the
scope of the function and then deleted when you exit the scope of the function. When you pass a variable
by reference, you are passing the variable’s memory address and therefore the actual variable that you
are passing to the function will be used in the function. What this also means is that if the value is
modified in the function it will stay modified when exiting the function. If passed by value, the copied
variable will be modified, so your original variable will not change. So what is the advantage of this you

Advanced Tool Writing for Character TD’s – Judd Simantov 18

might ask? Well the most obvious advantages are:

A. If you want to pass big arrays of data, it’s a lot cheaper to pass an address than to make a duplicate

of all the data.
B. You can pass multiple data types to a function and modify them inside the function instead of having

to return different data types in different function calls. Or returning everything is a string and casting
it back to a numerical data type.

Picture a scenario where you want to query a group of object’s names, translate values and visibility
values in one function and return the results. You could store all this information in one big string array
and loop in large increments, type casting each string, but this makes the code that much more
convoluted and slower by having to cast each string to a float and integer. So the next example will tackle
this problem by passing arrays as reference. The real big advantage here is that a name is a string,
translate values are floats and visibility values are integers, we are able to return all these data types in
one function call.

First we declare our array variables. At this point they are obviously empty and don’t contain any values.
We call the gdcPrintInfo() function and pass all the arrays. This function basically just prints out the
array values to the script editor output panel. When you execute the script you’ll notice all the arrays are
empty.

The arrays are printed right after their declaration and are shown to be empty, then they are passed to
the gdcQueryInfo() function. The gdcQueryInfo() function will query the selected objects for their
names, translate values and visibility values. Each array is appended with the corresponding name,
translates and visibility. By passing the size of the array as the array index you can dynamically append
an array. Once this function is called the results are passed to the gdcPrintInfo() function to display that
the arrays have been filled with the appropriate object information.

Advanced Tool Writing for Character TD’s – Judd Simantov 19

Being able to populate arrays inside of functions has some very important advantages and can really
keep code more manageable and increase speed and efficiency during script execution.

Advanced Tool Writing for Character TD’s – Judd Simantov 20

MEL User interfaces:

Implementing “Drag and Drop” support:

Drag and Drop support is something that is implemented in most modern applications. Most MEL UI
elements support drag and drop callbacks. Often people deal with the issue of transferring objects in a
list by having buttons that transfer it from one side to another. Although this approach works, dragging
and dropping is more natural and intuitive.

In order to implement drag and drop support you need to register a callback function, this function will be
executed when an element either receives a drag or drop on it, depending on which flag you pass the
callback to. The element will inherently pass the function certain arguments and you can then use these
arguments in your function to do as you please.

The example will include a window with two lists; the first list will be populated with some names that can
be dragged back and forth between the two lists. This will demonstrate the functionality and
implementation for drag and drop. Note: Maya uses the “middle” mouse button to drag items.

The first step is to set the –dragCallback flag and –dropCallback flag of your element control. You can
check the documentation to verify whether or not an element control supports these flags. In the example
below we implement both flags in two textScrollList elements. The flag takes one argument, which is the
name of the function. In our case the drag function is called gdc_DragCB and the drop function is called
gdc_DropCB. Next we will cover the implementation of these functions.

Advanced Tool Writing for Character TD’s – Judd Simantov 21

The callback functions will take certain arguments that are by default passed to the function by the
element control. For the drag callback it will be passed the name of the element control and the x and y
position of the mouse pointer relative to the UI when the middle mouse button was first clicked. So if you
click in the top-left corner of your UI, these values should be 0, 0.

The last argument is an integer called $mods, this integer will determine whether or not a button modifier
was pressed, such as “ctrl” and “shift”. The $mods is represented as: 0 = No modifiers, 1 = SHIFT, 2
= CTRL, 3 = CTRL + SHIFT. This will allow you to add things if shift is pressed and remove things if
control is pressed, or any other functionality that you would like to incorporate. The drag callback returns
a string array. This string array is passed to the drop callback function so you can essentially pass any
information from the drag callback to the drop callback.

The drop callback will take a few more arguments. The first is the control from which the objects where
dragged. The second argument is the control that objects are being dropped on. The third is a string
array called $msgs[]. This array basically holds the strings that you returned in the drag function as
mentioned above. At the end of the drag function we returned the $list[] array, this array is now passed
to the drop function as the $msgs[] array. We will then use this array to determine the list of selected
objects at the time of dragging. The $x and $y variables are the UI position of the mouse at the time of
dropping the objects.

The drop function will basically go through the list of objects passed in the $msgs[] array and remove it
from the “drag control” and append it to the “drop control”, resulting in a transfer of the selected items.

Advanced Tool Writing for Character TD’s – Judd Simantov 22

By allowing the ability to inherently pass information and return information between the drag and drop
function you are able to pretty much handle the implementation in any way you please. This makes for
very intuitive workflows with respect to moving objects in UI’s. Almost all elements have support for drag
and drop flags.

Defining and Using Templates:

Often when developing MEL user interfaces, certain control elements have consistent attributes that can
become tedious when coding complex and large interfaces that re-use the same element type. Defining
and using templates helps make this process slightly less painful. The first part of this process is
obviously to define the template.

Advanced Tool Writing for Character TD’s – Judd Simantov 23

Most UI elements have a “–defineTemplate” flag that is used to define which uiTemplate should hold
the template information. We start by initializing the uiTemplate that will hold the template information. In
our case the name of the uiTemplate is “gdcTemplate”. Once we have initialized the uiTemplate we
start defining templates for specific control elements. In order to define the template information, you
make a call to the control and use the “-defineTemplate” flag. You then pass all the necessary
information that should be stored. We define a button template which aligns the text to the left, adds a
“gdcButton” annotation, sets the width to 100, sets the height to 20 and finally sets the background
color to a light red color.

Once the template has been defined we create our control elements in the same manner as usual,
however the “-useTemplate” flag is added and passed the “gdcTemplate” uiTemplate that we defined
earlier in the script. Essentially what this does is tells the button to use the defined characteristics of the
button in the “gdcTemplate”. We create three buttons that use the template and a fourth button that
doesn’t. The result is three buttons that are red, wide and aligned to the left, while the fourth one is gray,
fits exactly to the size of the text and the text is aligned in the center.

Advanced Tool Writing for Character TD’s – Judd Simantov 24

Using templates can definitely save you lots of time and keep your code a lot more manageable. If for
any reason the color, width, height, font…etc of a UI element has to change, you will only need to change
it in one place as apposed to a making the change for every occurrence of the button.

Advanced Tool Writing for Character TD’s – Judd Simantov 25

Maya’s API (Application Programming Interface):

Many technical Maya users are proficient with MEL and are able to accomplish and solve many
production tasks on an everyday basis only using MEL. As powerful and capable as MEL is, it does have
certain drawbacks and depending on the problem at hand, it may not be as capable or ideal as the Maya
API. When I first started delving into the API, I was really struggling to figure out what the advantages
were and where it would be applicable. I’m going to try and demonstrate both the advantages and
applications for the API. The API is a C++ API and therefore does require that you have a fairly good
understanding of C++ and object oriented programming. Obviously the better your C++ knowledge the
more stable, optimized and extensive your plug-ins will be.

One of the noticeable advantages of using the API over MEL is that in most cases the API is faster. One
reason for plug-ins being faster is that they are compiled and linked and therefore optimized for the target
platform. The result of this is that your plug-ins will be platform dependant and version dependant.
Because the API is a C++ API, you can include external C++ libraries and exploit their functionality within
your plug-ins. Also, for things such as Deformers, Custom openGL Locators and Custom Manipulators,
you have no access to these features through MEL.

There are several different types of plug-ins you can write using Maya’s API and some are used in
conjunction with others. The plug-in types available are:

• Commands
• Nodes
• Deformers
• Locators
• Manipulators
• Contexts
• Solvers
• Shaders
• Fields
• Emitters
• File Translators
• Shapes

Due to time constraints I will not cover all of the above and primarily focus on commands, nodes and
locators.

API Introduction:

I will start off with an overview of some of the fundamental concepts that can help you get started with
writing plug-ins. A lot of the information will be sparse and concise to fit with in the time limits of the talk
and also to outline broader concepts without getting lost in the details. I urge you to explore these
concepts further and try to gain a better understanding of them in your own time.

Advanced Tool Writing for Character TD’s – Judd Simantov 26

All the classes in the API have prefixes that help distinguish their core application. I will go over these
prefixes so that when you are looking through the API class documentation, the functionality of the
classes make more sense. All handles to data and wrappers have an M prefix. E.g. MObject,
MDataHandle, MDataBlock. All function sets that allow you to work on top of the data have an MFn
prefix. E.g. MFnSkinCluster, MFnDependencyNode, MFnSingleIndexedComponent. All proxy
classes that are derived from, have a MPx prefix. E.g. MPxNode, MPxCommand, MPxDeformerNode.
Lastly, all iterators have a MIt prefix. E.g. MItSelectionList, MItMeshVertex, MItGeometry. Being aware
of this will help you when trying to find classes and functions to assist in your plug-in development.

Error Checking:

Error checking is an important aspect of any programming or scripting language. Maya offers the
MStatus class to handle error checking within the API and for the sake of consistency you should use
MStatus for error checking in your own functions and classes. Most function calls in the API either take a
pointer to an instance of MStatus or they return an instance of MStatus. After you have called a function
and either passed or returned an MStatus, you can check its status code to determine whether the
function call was successful or a failure. There are several other status codes that I will not cover but they
are documented. The two most common are kSuccess and kFailure. Based on the status code, you
can determine the rest of your program flow and easily report errors and successes. The more error
checking you implement the less time you spend debugging simple mistakes.

MGlobal:

MGlobal is a very commonly used class and for this reason deserves some special attention. MGlobal
allows you to perform common tasks that you will find yourself needing to do fairly often. Some examples
of this are: Getting a selection list by name, setting the current frame, executing a MEL command from
within an API function call and outputting messages and errors to the script editor. These are just a few of
the useful functions that MGlobal offers you.

MGlobal will be used throughout the examples, however you should take the time to look through the
documentation and just familiarize yourself with the functions that MGlobal has to offer. You will probably
find yourself using this class more often than not.

Advanced Tool Writing for Character TD’s – Judd Simantov 27

Commands:

Writing your own MEL Command Plug-ins:

Every MEL command that you use when writing MEL procedures is essentially an API command. Maya
has an exhaustive list of MEL commands that it supplies to you, however there are many times that you
will need to write your own commands to perform operations that aren’t available in the supplied MEL
commands. Although you can often combine MEL commands and create procedures to accomplish these
tasks, speed as well as not having the ability to derive off external libraries such as extensive math
libraries can become an issue.

When writing commands you will derive off of a base class called MPxCommand. There are many
member functions associated with this class that you don’t need to pay attention to, but in order for your
command to function correctly, the one function you do need is the doIt() function. This function is
essentially where all your command data will be stored and executed. If you wish to add undo support to
your plug-in you will need to look into the redoIt() and undoIt() functions. When adding undo support the
design of your plugin will need careful pre-planning and will require more work. Unfortunately this is
unavoidable. When adding undo support you will structure your plugin in such a way that you query and
store all your initial information in the doIt() function and then perform the actual operations in the
redoIt() function. You will also want to store any information necessary for undoing in the doIt() function.
When you call undoIt(), you are essentially restoring the scene to it’s state prior to the execution of your
command, therefore you will have to store the appropriate initial state information in order to revert to it.
Undo is only implemented when you change something in the scene and want to revert the changes,
there is no need to implement undo in a command that is going to query something in the scene.

An example that uses undo and redo will follow the closest point on mesh command.

Advanced Tool Writing for Character TD’s – Judd Simantov 28

Closest Point on Mesh Command:

The first command we are going to look at is a command that will find the closest point on a polygon
mesh to the point passed to the command. The idea behind this command is to illustrate the overall
workflow in writing a command, I will keep it simple and to the point. The next example will be a
command that is more applicable and will incorporate undo functionality.

Before getting into the details of the command, included in each project will be a pluginMain.cpp file.
This file is where we initialize the plug-in and register all the necessary commands, nodes,
deformers…etc.

This file will need to include the headers for the command, node or anything else you wish to register;
hence we have included the “gdcClosestPointCmd.h” file. If you don’t include this header, then when
the plugin.registerCommand() function is called and passed CClosestPoint::creator and
CClosestPoint::newSyntax the compiler will have no idea what these classes or functions are.

An instance of MfnPlugin is created, which is what will show up in the plugin manager in Maya and the
command is registered with the plugin using MFnPlugin::registerCommand(); If you were to include a
node in this plugin as well, you would then have a plugin.registerNode() call in the initializePlugin

Advanced Tool Writing for Character TD’s – Judd Simantov 29

function as well as the plugin.registerCommand(). You will see an instance of this in later examples.
Also note that if you do not have any flags associated with your command or you are not handling flags
and arguments through MSyntax, you do not have to register the newSyntax() function with your plugin.

The next function in the file is uninitializePlugin() and an instance of MFnPlugin is initialized again.The
deregisterCommand function is called and passed the name of the command that was the first
argument in the registerCommand function.

When it comes to writing a simple command that will not incorporate undo and redo functionality, but will
incorporate flags with arguments, there is a few functions that are necessary for the command to operate.
These functions are the creator() function, the doIt() function and the newSyntax() function. The creator

Advanced Tool Writing for Character TD’s – Judd Simantov 30

function will create an instance of your class and return it. The newSyntax() function will add all the flags
to an instance of MSyntax specifying the long name, short name and the data type. Both the creator()
and newSyntax() functions need to be registered with the plug-in as shown earlier.

The flag names are passed to the syntax.addFlag() function as a string of characters. They are declared
as global variables at the top of the .cpp file. The syntax looks like this:

const char *pointXFlag = “-px”;

Check the source file for a more applicable example.

The doIt() function in this example is where all the work is done. There is some basic error checking that
I will not cover, but I do suggest understanding and implementing error checks where potential errors
may occur.

The first part of the doIt() function initializes the point that will store the positions passed to the command.
It is initialized at the origin as a default, in case no flags are passed. Then an instance of MArgDatabase
is created called argData. MArgDatabase is a function set that takes a syntax function as an argument
and a MArgList as an argument, it then handles the retrieving of flag information for you. You can check
if the flag is set, and if it is, you get the flag argument. The last argument of the getFlagArgument()
function is the “.x” or [0] index element of the MPoint point we declared earlier. It will assign the flag
argument value to the point.x variable and do the same for point.y and point.z.

Advanced Tool Writing for Character TD’s – Judd Simantov 31

The next piece of code is probably something you will use very often. In MEL the line of code:
string $sl[] = `ls –sl`; is probably very familiar to you and something you use all the time. In the API, an
MSelectionList will store the selection information in a similar way to how the string array in the MEL
example stores it. You will pass the selected information to the MSelectionList by using
MGlobal::getActiveSelectionList(). This will get any selected objects in the scene and pass them to the
list. We then create a MItSelectionList object which is an iterator that will give us added flexibility over
standard “for loops” in looping the MSelectionList container. It is not 100% necessary that you use an
iterator to loop the list. You could achieve the same results using a “for loop”, but it is definitely more
convenient and practical as well as being faster. The iterator also allows you to filter out any objects that
are unwanted. In our instance we are filtering out anything that is not a poly mesh.

Advanced Tool Writing for Character TD’s – Judd Simantov 32

Finally we get to the actual core functionality of the command. In this next piece of code the iterator loop
is entered and this allows us to apply the same functionality to as many objects as the user has selected.
Through the iterator iterList we receive a handle to the selected objects dag path. In Maya the dag path
is the full path to the object including the hierarchy in the path. The reason for this is that Maya does
allow objects of the same name to exist in a scene provided they are in different hierarchies. Using full
dag path names will always ensure you are not selecting the wrong object or causing your code to error
out.

We then initialize two variables, a point called closestPoint and an integer called polygonID. The point
will hold the closest point on the mesh that we are querying and the integer will hold the id of the face that
the vertex is associated with. The dag path is then passed to the MFnMesh function set. The MFnMesh
class is used to operate on poly meshes. The naming of the classes is self-explanatory so if you were
looking for a function set to work on NURBs surfaces, the obvious name would be
MFnNurbsSurface…etc.

Once we have created an MFnMesh object called meshFn and passed it the necessary dag path, now
we can make use of all its functions and operate on the selected mesh. We are looking for the closest
point on the mesh, relative to the point we passed as an argument. So the function we are looking for is
getClosestPoint(); This function takes four arguments, the point that we passed to the command as an
argument, the variable that will hold the resulting position of the closest point, the space co-ordinates in
which to do the calculation and the variable to hold the face id.

The output code is pretty self explanatory and just prints the acquired information to the script editor
using the MGlobal::displayInfo(). At the end of each iteration we append a double array with the three
points acquired and then at the end of the doIt() function we setResult to the double array. The
setResult() function returns a data type that can be stored in a MEL variable. So in our example when
we call our command through MEL, it would look like this:

Advanced Tool Writing for Character TD’s – Judd Simantov 33

float $pt_array[] = `gdcClosestPoint –px 0.1 –py 0.3 –pz 2.5`;

It’s important to note that you cannot return multiple data types at the same time. You would need to
return different results based on a flag or condition. Check the Maya documentation for further
information on which data types can be passed to the setResult() function.

Advanced Tool Writing for Character TD’s – Judd Simantov 34

That is the final step in our first command. It is a very simple command and as a stand-alone tool, doesn’t
serve too much of a purpose, but the idea is really to introduce the basics of Maya’s API and writing a
custom MEL command. As an exercise to further your skills trying implementing the ability to handle
NURBs surfaces as well as handling each type by detecting it automatically. In general commands are
definitely the easier of plug-ins to write, especially when there is no undo and redo support incorporated.
The next example will incorporate undo and redo support.

Advanced Tool Writing for Character TD’s – Judd Simantov 35

Shape Snape – Undo/Redo functionatlity

The next command will introduce the concept of undo and redo. Implementing undo and redo capabilities
require that you take them into account before finalizing the design for you command. When you
implement undo and redo you essentially add an undoIt() and redoIt() function to your plugin, instead of
just a doIt() function as in the previous example. The first question that comes to mind is what is the
difference between doIt() and redoIt() and aren’t they redundant? To answer this question I will describe
the process of what will occur in your command. The basic explanation will potentially give you more
insight into how to design your plug-in with undo and redo in mind.

The general flow of a command is, first you gather the information you need in order to perform the
operation. Then you gather the information of the current state of the object(s) that you will be applying
the operation to. This will be used to return the operation to its previous state if an undo is requested.
Finally you execute the operation on the object(s) using the acquired information. Now if at this point the
user requests an undo, the command will take the previous state information you recorded and apply that
to the object(s). Basically returning it to its state before the command execution. If the user was to
perform a redo, it would be redundant to retrieve all the operation information and undo information
again. So at this point all you really need to do is just perform the operation again with the information
you acquired the first time.

This description above basically defines the difference between doIt() and redoIt(). The doIt() function
gathers the information that is only required once. The redoIt() function performs the actual work.

Advanced Tool Writing for Character TD’s – Judd Simantov 36

I will try not to repeat repetitive information from that described in the point on mesh command, so please
refer to the source for a more detailed breakdown of the command.

The first few things you need to do are to declare all your needed functions in the header file. The new
functions to pay attention to are the redoIt(), undoIt() and isUndoable() functions. The isUndoable()
function is concise and simple, all it does is return true or false. This Boolean value, basically tells Maya
that the command should or shouldn’t be added to the undo queue when executed.

First we’ll take a look at the doIt() function. As mentioned earlier in this example the doIt() function will
serve to retrieve information that is important to redoing and undoing the command. With that said, the
first portion of the function gets the current selection list and checks to make sure there are only two
objects selected. It is also a good idea to check to make sure that the object types selected are polygon
meshes. I’ve omitted this step once again for the sake of keeping things simplified.

Advanced Tool Writing for Character TD’s – Judd Simantov 37

Now that we have our selection list, we can get handles to the actual objects. Essentially there will be two
objects in this command, the original and the modified object. The modified shape will be the one that we
want our original to become. We declare an MDagPath to the modified object and a MObject to point to
the component data of the modified mesh, however we don’t declare the original MDagPath or MObject
anywhere in the doIt(). The reason for this is that we only need the modified information once off in the
doIt() function where we retrieve the information. The original mesh will need to be queried in the doIt()
for it’s position before modification and then modified in the redoIt() and undoIt() functions. Because the
original needs to be accessible in several different functions, we declare all of its handles as members of
the CShapeSnap class. This way we can have access to it, from any CShapeSnap function.

Now that we have handles to all our data, we initialize an MFnMesh function set, by passing it our new
acquired MDagPath handles.

All our handles and function sets are initialized and ready to go, we can now start querying and editing
our meshes.

We want the command to be able to work on whole object selections or component selections. That is
the reason for getting a handle to the object’s components in the first place. In order to check whether or
not we have an object or it’s components selected, we will validate the data stored in the component
handle. If the component handle is NULL, then we know that the whole object was selected and if it is not
NULL then we can retrieve the indices of the selected components.

We use the MFnSingleIndexedComponent function set to allows us to query or edit the component
data. In this instance we just want the indices of the selected components so we call the getElements()
function and pass it a member variable of type MIntArray called m_vertexIds. As with the original object
handles, the vertex indices are also going to be needed in all the functions and therefore are also
declared as a member of the CShapeSnap class. You can tell member variables by the “m_” prefix
used. This is another good example of why naming conventions are so important!

If the component handle is NULL then we just populate the m_vertexIds array with all the vertex ids of
the mesh.

Advanced Tool Writing for Character TD’s – Judd Simantov 38

Now that everything is initialized, we can query the positions of the modified vertices. We loop the
m_vertexIds and using the MFnMesh::getPoint() function we pass the index of the vertex we want to
query the MPoint that the position will be assigned to and the space in which we are querying. In our
case, we want the position to be based in object space. This way we can move the transforms around
and snap the vertices relative to it’s transform position. We retrieve the positions of both the modified
mesh and the original mesh and append the m_pointArray and the m_undoPoints respectively.

Just to re-iterate, the reason we are storing the original mesh’s vertex position is so that when the user
executes an undo operation we know how to return the object to it’s previous state before being snapped
to the modified mesh position. This is where implementing undo can become a huge inconvenience; you
always have to save the previous state if an object is to be modified.

Maya does provide some classes to help with undoing, depending on the type of operation. If you are
modifying animation curves there is a MAnimCurveChange class that will store all changes and then
has it’s own redoIt() and undoIt() functions that can be called. Similarly If you are executing MEL from
the API, creating nodes, deleting nodes, creating connections or deleting connections, there is a
MDGModifier class which will help handle the storing of previous states and the ability to then undo and
redo them.

The last part of the doIt() function is to return the result of the redoIt() function. This way when you
execute the command for the first time the doIt() will execute and because it returns the results of the
redoIt(), obviously the redoIt() function is also called. Now from this point on, if the user toggles between
undo and redo, only the undoIt() and redoIt() functions are called. Essentially this just ensures that the
execution part (the redoIt()) of your command is performed the first time the command is executed.

Advanced Tool Writing for Character TD’s – Judd Simantov 39

Lets take a look at the redoIt() function now. We initialize an MFnMesh function set on the MDagPath of
the original mesh. We then loop the previously stored indices of either the entire mesh or just the
selected components. Finally we set the new position of the original mesh vertices to match that of the
stored points from the modified mesh vertices. We use the MFnMesh::setPoint() function which works in
the same way as the getPoint() function, with the exception that it takes a MPoint as a new position to
set the vertex to.

That’s all there is to the redoIt() function. As you can see, if we were to execute an undo and redo now,
the entire retrieval process in the doIt() function is bypassed. Depending on the density of the mesh in
question, if everything was implemented in the redoIt(), including the retrieval process, things could slow
down drastically when calling a redo after an undo. This is also a pretty simplistic scenario, but
commands can get a lot more complex and the retrieval or initializing aspect could take much longer, in
which case this becomes even more important to be aware of.

Advanced Tool Writing for Character TD’s – Judd Simantov 40

I wont go into too much detail with the undoIt() function, as it is pretty much the exact same thing as the
redoIt(), except that we set the original mesh’s vertices back to their original state by using the
m_undoPoints instead of the m_pointArray that is used in the redoIt().

Advanced Tool Writing for Character TD’s – Judd Simantov 41

That concludes the shape snap command and the command section of the API. The registering of the
command is the same for the shape snap command as it was for the point on mesh command. Always
figure out if you need to be able to undo your operation before starting to write or plan your command. A
good rule of thumb is if it is going to modify something in the DG and not just query information then
implementing undo is usually a good idea.

Advanced Tool Writing for Character TD’s – Judd Simantov 42

Nodes:

Writing your own Custom DG Nodes

In this section I will be taking you through the basics of writing your own custom DG nodes. The basis for
a node is, it takes an input, does some computation with this input in the compute() function and then
outputs the result. In your node you will setup dependencies so that the output will be recomputed when
an input is changed.

Nodes are derived from the MPxNode class. When you derive from MPxNode there will be a function
called compute(). This is the function where you will be doing all your computations. In the compute(),
you get your input values and pass them to variables, once they are stored in variables you perform
some operation with them and then pass the result of the operations performed to the output attribute.
The final step is to set the attribute as being “clean”. This basically tells Maya that the attribute has been
computed and holds the new value.

One thing to remember about a node is that it should never know about anything outside of itself. What
this basically means is that if there is something in your scene that should affect your node or be used in
the compute function, you should never retrieve the information without connecting the appropriate
attribute as an input. Disregarding this can result in dependency cycles and cause un-wanted results.

In order for the dependency graph and Maya’s file formats to recognize a custom node, each node will
need a unique id assigned to it. This is done through the use of a MTypeId, which is a class Maya
supplies you with. A valid range for the id number is between 0x00000000 and 0x0007ffff. It’s very
important that this number is set correctly from the start and not changed too often, if at all. Whenever a
Maya Binary file is opened the MTypeId is used to identify the node type and what information to load
from disk. If this number changes, then opening existing Maya Binary files that contain the node will not
load the correct information. Maya ASCII files use the node’s type to identify the information so this
problem is not as much of a concern with the respect to changing the id number. If you plan on making
3rd party plug-ins that will be commercialized, it’s important that you contact Alias for a unique id so that
there is no conflict with any other commercial plug-ins currently available.

When your node is created the initialize() function is called. This function will create all your attributes
and setup the dependencies between them. Once all the attributes are initialized and added to your
node, you can access them using an MDataHandle. An MDataHandle basically just gives you a handle
to the attribute’s data and allows you to pass the data to a variable of the appropriate data type.

Poly Face Custom DG Node:

Attaching objects to polygon faces is definitely something that can be very useful. I figured this would
make for a good custom DG node example. All the source code will be supplied, so you can also make
modifications if you please. Our goal for this node will be to create a node that will output the position,

Advanced Tool Writing for Character TD’s – Judd Simantov 43

orientation and normal of any specified face on a polygon mesh.

First off is an example of what the class declaration for our node will look like. As mentioned above you
will derive from the MPxNode class. We then declare our functions and members of the class. The full
header file is available with the notes.

Next we have to define all the static MObjects that will be the handles to the attributes. We also define
the node’s unique MTypeId that will then be registered with the plug-in.

The first real implementation of the node is the initialize() function that will get called when the node is
created. In the initialize for the poly face node, we will start by adding all the attributes that our node
needs in order to compute the necessary information. There are several attribute function sets that allow
you to create different types of attributes. The most commonly used will definitely be
MFnNumericAttribute, however there are several more that you will find yourself using frequently. In our
case we are going to need numeric and typed attributes, so we will declare function sets for these two.
The image illustrates numeric attributes of type k3Double being defined and initialized as well as a typed

Advanced Tool Writing for Character TD’s – Judd Simantov 44

attribute of kMesh. For further examples of the rest, refer to the supplied source code. You create the
attribute and pass the data to the earlier declared MObject that will hold the data for each specific
attribute. From this point on, anytime you need to pass the data of the attribute to a function set, you will
be using the attributes MObject handle. Once you have created the attribute data you can define
whether the attribute should be keyable, hidden, storable…etc. Finally you call the addAttribute()
function which will add the attribute to the node.

Advanced Tool Writing for Character TD’s – Judd Simantov 45

Once the attributes have been added and initialized the next step is to set the dependencies between the
attributes. If you want an input attribute to trigger a compute on a specific output attribute, it’s imperative
that you define a relationship between the attributes. The way to do this is by calling the
attributeAffects() function. This function takes the input attribute as the first argument and the output
attribute as the second attribute. This is essentially saying whenever the specified input attribute
changes, compute the specified output attribute.

That’s all we are going to define in our initialize. If at this point that were all you implemented in your node
and you then created the node in your scene, you would have a node with all the attributes added that
have no functionality but are defined. The next section will give the node some purpose, by defining the
nodes implementation and functionality. The function that handles all of this is the compute() function.
The compute() is really the brain of the node. In the compute function we will get the values of all the
attributes, use them to do some sort of calculations and finally output the result.

The compute function is inherently passed two arguments, an MPlug and an MDataBlock. A plug can be
thought of as an attribute and an MPlug gives you a set of functions to query and modify the
plug/attribute. An MDataBlock is a convenient way of storing all the attribute data so that you can easily
access the information through the compute(). Maya provides you with an MDataHandle and
MArrayDataHandle to access the attributes in an MDataBlock. As mentioned above the compute will
inherently be passed the MPlug for the attribute that is being marked dirty and the MDataBlock for the
specific node. You can use the plug passed to the compute to verify which operations should be
performed for which outputs and also to verify if the plug is a valid attribute. In the example below the
operation will only take place if any of the output attributes (mOut_position, mOut_rotation and
mOut_normal) are to be evaluated.

Advanced Tool Writing for Character TD’s – Judd Simantov 46

First off we create an MDataHandle for each of our input attributes. We get the data by calling the
MDataBlock::inputValue() function and passing the name of the attribute in question. This function will
return an MDataHandle. We then use the MDataHandle to get the attribute value and pass it to a
variable.

Once we have retrieved all the attribute data and passed them to variables, we start the actual
implementation. For the polyShape input attribute, instead of passing the result to a standard data type
such as an integer or float – which would clearly not be feasible – we pass it to an MObject which will
have a handle to the polyShape data so that polygon function sets such as MFnMesh() can be used on
the polyShape data.

Advanced Tool Writing for Character TD’s – Judd Simantov 47

Now that we have a function set that will operate on the mesh we can start to query the necessary
information we care about. We call the getPolygonNormal() function that will return us the normal of the
specified face in world space. Now that we have the normal of the face we can define an objects
orientation. Using the normal and the input up-vector we construct a Quaternion that will give us the
rotation amount from the up-vector to the normal. Objects are rotated in Maya using Eulers so we
convert the Quaternion rotation into an Euler rotation. Finally we pass the Euler rotation to a vector (3
doubles) and multiply the vector by 57.29578, which will convert from radians to degrees. Now that we
have our rotation in a format that can be passed to our output attribute, we set the m_outRotation
attribute with the outRotation vector. For the position we follow very similar steps to that of the rotation,
except that in order to calculate the position of a face we do an average of all the vertices that make up
that face. We use the getPolygonVertices() function to get a list of the vertices that make up the
specified face. Once we have the vertices, we loop the list of vertex ids and get the position of each
vertex in world space. While retrieving each point, we add the points up by appending the sumOfPoints
vector.

Advanced Tool Writing for Character TD’s – Judd Simantov 48

Finally we divide the sum of all the points by the number of points and that is our final position.
Now that we have completed all position calculations, we move onto setting the output attribute with the
newly calculated data. Earlier we got a MDataHandle from the MDataBlock using the inputValue()
function and this time we receive the MDataHandle through using the outputValue() function. The

Advanced Tool Writing for Character TD’s – Judd Simantov 49

inputValue() function guarantees that the attribute data will be valid and therefore is ideal for reading
data from the attributes. The outputValue() function on the other hand does not guarantee the data will
be valid and is therefore used for writing data to the node.

The MDataHandle has a set() function that is used to set the new data. Once the data has been set, the
MDataBlock::setClean() function is called which basically just tells Maya that the attribute is set and
does not need to be evaluated.

The last aspect we will look at for the node is the registering and de-registering of the node. This
registration will take place in the nodes initializePlugin() function and the de-registration will take place
in the nodes uninitializePlugin() function exactly like in the command examples. To register the node
you basically call the MFnPlugin::registerNode() function which takes the node name as the first
argument, the unique MTypeId as the second, the node’s creator() function as the third and the node’s
initialize() function as the last. The uninitializePlugin() function has a deregisterNode() function call
that only takes the unique MTypeId to de-register the node. This part is definitely the easiest to forget
when writing plug-ins. So if you find that for some odd reason your plug-in is not loading or you cannot
create your nodes, check this portion of your code first!

Advanced Tool Writing for Character TD’s – Judd Simantov 50

That’s all there is to writing your own custom DG node. There is a MEL script that accompanies this talk
called gdcCreatePolyFaceNode.mel, which will setup the node for all the selected faces on a mesh. I
would suggest trying to do it manually as well, so that you can get a feel for setting up the connections
and in turn gain a clearer understanding of exactly what is going on under the hood. The full source code
is also supplied with these notes for a detailed example of the implementation. I would suggest definitely
looking through those as well. There is a good amount of stuff that I opted to omit from this document for
the sake of sticking to the fundamental concepts that are necessary, so make a point of reading through
as much of the accompanied source files as possible.

Advanced Tool Writing for Character TD’s – Judd Simantov 51

Custom Maya Locators (A node with a shape):

A locator is exactly like a node with the exception that it draws a shape in the view-port. This gives a
locator the ability to display the results of what the node is doing to the user and therefore make certain
aspects of a node that are hard to visualize more clear. The major difference between an MPxNode and
an MPxLocatorNode with respect to implementation is that a locator has a draw() function that you can
implement, so you can make your own native openGL calls. Unfortunately openGL in itself is out of the
scope of this talk, although I will cover it briefly when implementing the draw() function for our locator.

Just like a node, a locator has a compute() function where you handle your attribute inputs and generate
your attribute outputs. A locator is registered as a dependency graph node and therefore will also require
that you make sure that your locator has a unique MTypeId. Finally when you register your node you
have to specify that the node being registered is a locator node. I will cover this later on, when talking
about the initializePlugin() and uninitializePlugin() of a locator.

Advanced Tool Writing for Character TD’s – Judd Simantov 52

Converting the Poly Face Node into a Poly Face Locator:

As I mentioned above a locator is very similar to a node with the exception that a locator has drawing
abilities. Due to this, I will not cover any of the same implementation discussed above, so I will only be
discussing the areas that are unique to a locator. Our compute() function will stay almost exactly the
same as in the node example. The only difference is that we will be adding a shapeScale attribute that
will allow us to scale the size of the locator shape. Our goal is to draw a shape that is a circle and a line
that is positioned at the center of the face and is pointing in the direction of the face normal.

The first difference to note is that a node is derived from the MPxNode class and a locator is derived
from the MPxLocatorNode class.

Below is the first part of the class declaration, as you can see we are deriving from the MPxLocatorNode
class and have two new functions, draw() and getCirclePoints(). Only the draw function is absolutely
necessary, the getCirclePoints function is just used to calculate the points for drawing a circle, this could
easily have just been done in the draw function, however it comes back to modularity and keeping your
code clean.

As mentioned previously, the draw() function is the heart of a locator. Most of what takes place in the
draw function is openGL based. This means that in order to draw complex locators, you will need to gain
a basic knowledge of openGL. As with the compute function there are some inherit arguments that are
passed to the draw function. The first is an instance of M3dView, this class gives you access to functions
that allow you to work in a Maya openGL window. The second argument is an MDagPath to the locator
in the DAG. The fourth is an instance of M3dView::DisplayStyle. This determines what mode the current
openGL window is drawing in. This way you can determine whether the current viewport is in wireframe,
shaded or texture mode. The last argument is the M3dView::DisplayStatus, this determine the selection

Advanced Tool Writing for Character TD’s – Judd Simantov 53

status of the object. Using the DisplayStatus you can determine if the object is selected, non-selected,
highlighted, affected…etc. Depending on all the retrieved display information, you can make decisions on
how to draw your object.

The draw() function does not take an MDatablock as an argument and therefore if you want to gain
access to your node’s plugs/attributes, you need to initialize an MPlug using the attribute’s MObject
handle and using the thisMObject() function call. The thisMObject() basically returns an MObject
handle of the current class that you are calling the function in. You then initialize an MPlug by passing
those two MObjects and you can now query and edit the attribute’s values. As you can see below we get
the values of all the attributes that will helps us draw the locator.

Once we have passed all the data needed to draw our locator to variables, we can actually start the
drawing implementation. The first thing we need to do is prep everything so that we can draw our shape.
Using the M3dView view that was passed to the draw function, we call the beginGL() function. This
function will setup a port so that we can make native openGL calls. Next we call glPushAttrib() and
glPushClientAttrib(). In a nutshell, these functions allow you to “push” or save the current attribute
states from the current openGL view. This way if you modify the line width or transparency of something,
all of Maya’s existing lines and transparent objects will not be affected. It is very important that you
include both these functions before drawing your own objects. The concept of “pushing” and “popping” is
commonly used in openGL and something that you will probably becoming familiar with in no time.

Advanced Tool Writing for Character TD’s – Judd Simantov 54

Enabling and disabling of states is also something commonly used in openGL. In order to allow for
transparency of polygons we have to enable alpha blending using the glEnable() function.
glBlendFunc() determines the source and destination blend factors. Using the M3dView::DisplayStatus
we can determine if the object is selected or not. Based on whether or not the object is selected, we
either display an orange color or a light green color. Lastly we set the line width before drawing the
objects. In order to set the line width, we use the glLineWidth() function.

Now that we have initialized all the necessary data for drawing the objects, we can begin defining our
shapes. In order to transform objects in openGL you must save the current transformation matrix using
glPushMatrix() and then apply your transformations. Once you’ve stored the transformation matrix,
applied your transformation and drawn your object, you must restore the previous transformation state
using the glPopMatrix(). Now that we have stored the transformation state, we can translate and scale
the object by calling the glTranslated() and glScaled() functions. We use the position of the face that we
calculated in the compute function to translate the object and we use the scale from the shapeScale
attribute we created to modify the size in which the shape is displayed.

In order to draw something in openGL you must call the glBegin() function which will take an argument
that describes what you will be drawing. In our case we will start off by just drawing a line to symbolize
the normal of the face. After calling glBegin() we set the co-ordinates of our vertices using the
glVertex3d() function. The first point is at the origin and the second is the face normal that we calculated
in the compute(). When done drawing, we call the glEnd() function. The rest of the code that follows in
the image below is basically this same format described above. We then also go on to draw a polygon
circle that is centered at the center of the face.

Advanced Tool Writing for Character TD’s – Judd Simantov 55

Once we have done all our drawing, we restore all the previous states and transformation matrices.
Lastly we call the M3dView::endGL() function, which tells Maya that we are done making native openGL
calls.

Advanced Tool Writing for Character TD’s – Judd Simantov 56

The initializePlugin() function has one small difference to that of a normal MPxNode. Below you can
see that when we call the registerNode(), the last argument we pass is MPxNode::kLocatorNode, this
defines that our node is registered as a locator node.

That concludes writing your own custom locators. The biggest hurdle with writing locators is that you are
required to learn an entirely new API, openGL. While familiarizing yourself with Maya’s API and more
importantly C++, it’s probably a good idea to leave the openGL-based plug-ins for a later stage.

Advanced Tool Writing for Character TD’s – Judd Simantov 57

Conclusion:

Writing advanced tools can be extremely challenging and overwhelming at first. It’s important that you
persevere through the complexity and magnitude that is initially presented. The learning curve will soon
become exponential and in good time, the concepts that seemed impossible to grasp, will become
common usage in your everyday tool writing.

Everything that I have presented in this paper and talk is the basis for much larger and more innovative
tools. Although some of the examples presented are production applicable, I urge you to use them as a
guide towards coming up with your own creative tools, that are far more extensive than those presented
here.

If you have any further questions and need to contact me, please email me at:

judd@cgmuscle.com

Thank you very much for the support by attending this talk. I hope it will prove to be useful to you in your
future development.

Special Thanks to: Jacky Simantov, Anna DiDonato, Sammy Simantov, Carlos Gonzalez-Ochoa,
Jeremy Lai-Yates, Vitaliy Genkin and everybody at Naughty Dog Inc.

