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2m daus
over two days

source: developeranalytics.com
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fishville
growth example

6m daus
in its first week

source: developeranalytics.com
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over five months
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three major types

web server stack

html flash

web + mmo stack

flash

TM

http://www.zynga.com/games/index.php?game=vampires
http://www.zynga.com/games/index.php?game=dragonwars


• the game is “just” 

a web page

• minimal sys reqs

• maybe some Flash

client side

• high production 

quality games

• game logic on client

• can keep open 

socket

flash html + ajax

TM



Server Side

web stack mixed stack

• usually based on a 

LAMP stack

• game logic in PHP

• HTTP communication

• game logic in MMO 

server (eg. Java)

• web stack for 

everything else

TM



why web stack?

• HTTP scales very well

• stateless request/response

• easy to load-balance across servers

• easy to add more servers

• all the good stuff about turnkey solutions 



some departures from web

• games are:

• very stateful

• write-heavy

• sensitive to order of execution

• HTTP is request/response 

• data push is desirable but hard



mmo servers

• not the focus of this talk

• socket servers with game logic:

• persistent socket connection per client

• live game support: chat, live events

• supports data push

• keeps game state in memory



social network integration

• “easy” because not related to scaling 

• calling the host network to get a list of friends, post

something, etc.

• networks provide REST APIs, and sometimes client 

libraries



1. web server scaling

2. web programming model

3. database

4. memcache and caching

part II. scaling solutions
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server affinity issues

• load balancing works by spreading requests across 

different servers

• where do player requests go:

• same server every time? 

• different server each time?

• affinity would make programming easier

• but it’s hard to guarantee

• don’t assume affinity



scaling content delivery

CDN

game data

only

media

files

media

files

web 
servers

client



• LAMP example:

• apache server to handle HTTP requests

• PHP to implement game logic

• each request is completely separate:

• spins up Apache process + PHP 

• processes request, produces results

• cleans up and finishes

2. web programming model



PHP for game logic

• we tend to use PHP

• facebook used to only provide PHP libs

• mature integration into server stack

• but use whatever works best for your team

• regardless of language, stateless web 

programming model is a scalability win



web servers

DB

3. database
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how to partition data?

• two most common ways:

• vertical – by table

• easy but doesn’t scale with DAUs

• horizontal – by row

• harder to do, but gives best results!

• different rows live on different DBs

• need a good mapping from row # to DB



id data

100 foo

101 bar

102 baz

103 xyzzy

row striping

m0 m1

• row-to-shard mapping:

• primary key modulo 

# of DBs

• like a “logical RAID 0”

• more clever schemes 

exist, of course



S0 S1m2 m3

x x

scaling out your shards

m0

ServersServersservers

m1



sharding in a nutshell

• It’s just data striping across databases 

(“logical RAID 0”)

• there’s no automatic replication, etc.

• no magic about how it works

• that’s also what makes it robust, 

easy to set up and maintain!



sharding surprises

• can’t do joins across shards

• instead, do multiple selects, 

or denormalize your data

be careful with joins



sharding surprises

• CPU-expensive; easier to pay this cost in the 

application layer (just be careful)

• the more you keep in RAM, the less you’ll 

need these

skip transactions 

and foreign key constraints



web servers

DB

web server

cache

DB

4. caching



• speed up access to commonly used data

• prevents you from hitting the DB all the time

4. caching



memcached

• very popular in-memory cache.  

• stores simple key-value pairs

• set [key] [data] [expiration]

• get [key]  => [data]

• add / delete / etc.

• atomic check-and-set!

• cas [key] [data]

• Useful for synchronization



memcached

• what to put there?

• structured game data

• eg. “uid_123” => {name:”Robert”, …}

• use CAS to implement mutexes for concurrent actions

• eg. make sure two web servers aren’t updating the same data at 

the same time

• standard concurrency problem



storage model

• internal storage: pools of fixed-size elements

• pools of 1kb objects, 2kb objects, etc .

• called “slabs” in memcache parlance

• makes for very fast allocation – at a price



caveats

• unexpected evictions

• you can run out of room in a slab before  you run out of 

room globally

• then oldest data will get evicted, even if it hasn’t reached 

expiration date

• small game changes can increase evictions, which 

will increase DB load



memcached

• easy to scale horizontally

• Comes with key-based horizontal sharding

• it’s a cache, not a DB

• no persistence!  No fallover!



scaling summary



scaling

i need more boxesi need a bigger box

growth example



scaling

scale out has been a clear win:

• at some point you can’t 

get a box big enough, 

quickly enough

• much easier to add 

more boxes

• but: requires architectural 

support in all layers



scaling

you have to scale out everywhere

• web

• caches

• DB



The End


