

dr. robert zubek

scalability for social games

top social game developer

TM

frontierville

2m daus
over two days

source: developeranalytics.com

growth example

fishville
growth example

6m daus
in its first week

source: developeranalytics.com

farmville
growth example

source: developeranalytics.com

25m daus
over five months

part II. scaling solutions

talk overview

part I. game architectures
introduce game developers to best

practices for large-scale web development

introduce game developers to best

practices for large-scale web development

part II. scaling solutions

talk overview

servers

clients
part I. game architectures

three major types

web server stack

html flash

web + mmo stack

flash

TM

http://www.zynga.com/games/index.php?game=vampires
http://www.zynga.com/games/index.php?game=dragonwars

• the game is “just”

a web page

• minimal sys reqs

• maybe some Flash

client side

• high production

quality games

• game logic on client

• can keep open

socket

flash html + ajax

TM

Server Side

web stack mixed stack

• usually based on a

LAMP stack

• game logic in PHP

• HTTP communication

• game logic in MMO

server (eg. Java)

• web stack for

everything else

TM

why web stack?

• HTTP scales very well

• stateless request/response

• easy to load-balance across servers

• easy to add more servers

• all the good stuff about turnkey solutions 

some departures from web

• games are:

• very stateful

• write-heavy

• sensitive to order of execution

• HTTP is request/response

• data push is desirable but hard

mmo servers

• not the focus of this talk

• socket servers with game logic:

• persistent socket connection per client

• live game support: chat, live events

• supports data push

• keeps game state in memory

social network integration

• “easy” because not related to scaling 

• calling the host network to get a list of friends, post

something, etc.

• networks provide REST APIs, and sometimes client

libraries

1. web server scaling

2. web programming model

3. database

4. memcache and caching

part II. scaling solutions

client
client

client

web server 1 web server n

LB

client client

web servers

1. web server scaling

1. web server scaling

client
client

client

client client

DNS

LB

LB LB

web server 1 web server n

server affinity issues

• load balancing works by spreading requests across

different servers

• where do player requests go:

• same server every time?

• different server each time?

• affinity would make programming easier

• but it’s hard to guarantee

• don’t assume affinity

scaling content delivery

CDN

game data

only

media

files

media

files

web
servers

client

• LAMP example:

• apache server to handle HTTP requests

• PHP to implement game logic

• each request is completely separate:

• spins up Apache process + PHP

• processes request, produces results

• cleans up and finishes

2. web programming model

PHP for game logic

• we tend to use PHP

• facebook used to only provide PHP libs

• mature integration into server stack

• but use whatever works best for your team

• regardless of language, stateless web

programming model is a scalability win

web servers

DB

3. database

app

W R

qps
max
qps

DAU

Measuring DB limits

max DAU
for this DB

measured
qps

M S S

App

M

App

M

m0

app

m1

how to partition data?

• two most common ways:

• vertical – by table

• easy but doesn’t scale with DAUs

• horizontal – by row

• harder to do, but gives best results!

• different rows live on different DBs

• need a good mapping from row # to DB

id data

100 foo

101 bar

102 baz

103 xyzzy

row striping

m0 m1

• row-to-shard mapping:

• primary key modulo

of DBs

• like a “logical RAID 0”

• more clever schemes

exist, of course

S0 S1m2 m3

x x

scaling out your shards

m0

ServersServersservers

m1

sharding in a nutshell

• It’s just data striping across databases

(“logical RAID 0”)

• there’s no automatic replication, etc.

• no magic about how it works

• that’s also what makes it robust,

easy to set up and maintain!

sharding surprises

• can’t do joins across shards

• instead, do multiple selects,

or denormalize your data

be careful with joins

sharding surprises

• CPU-expensive; easier to pay this cost in the

application layer (just be careful)

• the more you keep in RAM, the less you’ll

need these

skip transactions

and foreign key constraints

web servers

DB

web server

cache

DB

4. caching

• speed up access to commonly used data

• prevents you from hitting the DB all the time

4. caching

memcached

• very popular in-memory cache.

• stores simple key-value pairs

• set [key] [data] [expiration]

• get [key] => [data]

• add / delete / etc.

• atomic check-and-set!

• cas [key] [data]

• Useful for synchronization

memcached

• what to put there?

• structured game data

• eg. “uid_123” => {name:”Robert”, …}

• use CAS to implement mutexes for concurrent actions

• eg. make sure two web servers aren’t updating the same data at

the same time

• standard concurrency problem

storage model

• internal storage: pools of fixed-size elements

• pools of 1kb objects, 2kb objects, etc .

• called “slabs” in memcache parlance

• makes for very fast allocation – at a price

caveats

• unexpected evictions

• you can run out of room in a slab before you run out of

room globally

• then oldest data will get evicted, even if it hasn’t reached

expiration date

• small game changes can increase evictions, which

will increase DB load

memcached

• easy to scale horizontally

• Comes with key-based horizontal sharding

• it’s a cache, not a DB

• no persistence! No fallover!

scaling summary

scaling

i need more boxesi need a bigger box

growth example

scaling

scale out has been a clear win:

• at some point you can’t

get a box big enough,

quickly enough

• much easier to add

more boxes

• but: requires architectural

support in all layers

scaling

you have to scale out everywhere

• web

• caches

• DB

The End

