
Creating Your Building Blocks
Modular Component AI Systems

 Brett Laming, Rockstar Leeds

 Joel McGinnis, CCP

 Alex Champandard, AiGameDev.com

Overview

1. Brett Laming

 Component systems revisited

2. Joel McGinnis

 Behaviour and Design Patterns

3. Alex Champandard

 Performance and Multi-threading

COMPONENT SYSTEMS
REVISITED

Part 1. Brett Laming

Component Systems

 What are they?
 No single definition

 Potentially
 Smart objects

 COM

 Game object / entity architectures

 Plug-ins

 Message based, data driven

 Fairly certain class cOgre : class cMonster
is wrong

Background

 DEEP CLASS

class cThrowingKnife :

public cRangedWeapon,

public cMeleeWeapon

Background

 DEEP CLASS

class cWeapon : public cDynamicProp

class cRangedWeapon : public cWeapon

class cBow : public cRangedWeapon

class cBallista :

public cRangedWeapon,

public cStaticProp,

!public cDynamicProp

Background

 DEEP CLASS FAT CLASS

class cWeapon : public cGameObj

{

 cGameObj* CreateAmmo();

// Reloading not for melee

 eState mState;

 eAttackMode mAttackMode;

 eAmmoType mAmmoType;

// Ranged weapons only

 int mAmmoCount;

};

Background

 DEEP CLASS FAT CLASS PLUGIN

Background

 DEEP CLASS FAT CLASS PLUGIN DATA DRIVEN

Damned if you do…

 Don’t believe it.

 We get the problems

Component

 Broad Classification

 Key Properties

 Defined I/O

 Interchangeable

System

 Organisation

 Compartmentalization

Reusable A.I.

 Output gameplay.

 Input gameplay world

 Disciplined gameplay

 Good organisation

 Purposeful data

 Sensible lifetimes

 Good reusable A.I.

 5 key levels of organisation

INHERITANCE
 Taxonomy
 Component Name

STRUCTURE
 World Organisation
 Parents – Children

DATA FLOW
 A.I. Gameplay

COMPARTMENTALIZATION
 Data boundaries
 Smart objects and DLC

PARALLELIZATION
 Homogenous
 Batches / Jobs

Inheritance
Object Base Classification Name

cGameObj

cVehicle cCar

cSeat

cDrivingSeat

cGunnerSeat

cLiving

cDog

cArea

cInterior

cExterior

cHuman

cWeapon cPistol

 Classification

• RTTI queries

• Ability to sort by class
 Name

• RTTI factory creation

• Ability to serialise
 Combined

• Data driven approach

• Shallow hierarchy

RTTI Power

typedef int RttiType

DECLARE_RTTI_TYPE

IMPLEMENT_RTTI_META_BEGIN

IMPLEMENT_RTTI_META_END

RTTI_CLASSIFY_AND_ADD(mpSeat, cSeat, p_obj);

cWeapon *p_wep = DynamicCast<cWeapon*>(p_obj);

cRegistry::Instance().Create(R_STR(“cColt45”));

virtual void Serialise(cAttributeReader &rdr);

virtual void Serialise(cAttributeWriter &wtr);

rdr << PTR_IS_OWNED(mpSeats)

 With a pre compile step, you can make it extremely efficient
indeed!

Structure

 Spatial
• cGameObj

• Reference frame

• World transform

 Functional
• Composition

• Aggregation

• Dependency tracking
• Conflict resolution

• Job ordering

class cThing

{

 RttiType mRTTI;

};

class cGameObj : public cThing

{

public:

private:

 cGameObj *mpParent;

 cGameObj *mpFirstChild;

 cGameObj *mpNextSibling;

 cMat4 mLocalTransform;

};

Structure & Inheritance

cWorld

cWorldRegion

cInterior

cVehicle

cCar

cSeat

cDrivingSeat

cLiving*

cHuman

cSeat*

cGunnerSeat

cLiving*

cHuman

cWeapon*

cLiving

cDog

cWorldRegion

cInterior

cWorldRegion

cExterior

cLiving

cHuman

cSkeleton

cGameObject*

cBrain

cSensory

cBrain

cSensory

cWeapon

cPistol

cTurret

Data Flow

 Data Flow
• World State A.I

Gameplay World State

 Changes to structure
• Not inside dt!

• Upstream Message

• Downstream Message

 Changes to properties
• Downstream Signalling

• Upstream Signalling

• Spatial Barrier Message

cWorld

cWorldRegion

cInterior

cVehicle

cCar

cSeat

cDrivingSeat

cLiving*

cHuman

cSeat*

cGunnerSeat

cLiving*

cHuman

cWeapon*

cBrain

cSensory

cBrain

cSensory

cTurret

cGameObj

cBullet

Compartmentalization

 Smart Objects

 Reconstructable by RTTI

 Near free

 Given good structure

 External instructions

 A.I., animation etc…

 Carried by signalling

cVehicle

cCar

cSeat

cDrivingSeat

cLiving*

cHuman

cSeat*

cGunnerSeat

cLiving*

cWeapon*

cBrain

cSensory

cPhysics*

Parallelization

 The ideal…

 … is still a way off

 A.I./gameplay still parallelizes!

 Even in game graphs!

 Indirection

 Aliasing

 Candidates

 Leaf output

 animation, navigation,
component update

 Leaf input

 sensory info, blackboards, ray
tests

cInterior cInterior

cSensory cSensory

cLiving*

cBrett

cLiving*

cAlex

cLiving*

cJoel

All things being good…

cWorld

cWorldRegion

cInterior

cVehicle

cCar

cSeat

cDrivingSeat

cLiving*

cHuman

cSeat*

cGunnerSeat

cLiving*

cHuman

cWeapon*

cLiving

cDog

cWorldRegion

cInterior

cWorldRegion

cExterior

cLiving

cHuman

cSkeleton

cGameObject*

cBrain

cSensory

cBrain

cSensory

cWeapon

cPistol

Design Tricks 1

 Remove temptation
 Minimal data

 Per frame stack

 Minimal lifetime
 Use new/delete boundary!

 Pools

 Favour derivation
 No equation contradiction

 No duplicate data

 Potential deep class problem?
 Generalise

class cPhysicalProperties

{

public:

 inline float Volume() const;

 inline float Mass() const

 {

return Volume() * mDensity;

 }

 inline float BoundsRadius() const;

 inline bool IsCarriable(cAABB grasp,

 float force) const;

 inline bool IsThrowable(float force) const;

private:

 cAABB mBoundingBox;

 float mDensity;

};

Design Tricks 2

 Locality of reference
 Abstraction + composition

 Placement new

 Embedded lists

 Pools

 Minimise NULL checks

 Non-virtual pathways
 Use RTTI filtering

 Many virtual pointers
 Package once and carry

downstream

class cProjectile : public cGameObj

{

public:

 DECLARE_POOL(...);

 cProjectile() : mpPhysics(&mNullPhysics) { }

 void SetGravity(...) { mpPhysics->Add(mGravity); }

private:

 iPhysics *mpPhysics;

 cGravity mGravity;

 static cDummyPhysics mNullPhysics;

};

Conclusions

 Gameplay gives us fun buttons to press!
 Tight game-play Good, reusable A.I.

 Think
 Minimal classes

 Data life time

 Locality of reference

 Use
 Generalisation

 RTTI

 Placement new/delete

 Pools

 Nothing is really that un-surmountable!

AI DESIGN PATTERNS

Part 2. Joel McGinnis

What are the pressures?

 Resources

 Cycles

 Memory

 Design specificity

 CA for AI

 Flexibility

 Performance balancing

Word of warning

 Paradigm not
architecture

 So we’ll be looking
at patterns

TAKING IT APART

 Pattern

AIComponent

“Where shall we put the data?”

“Lets just put it on the AIComponent”

“That seems like a bad idea, lets not do it”

(anti)

So what do you have?

Behavior
Tree

Pathfinder

Movement
controller

Target
manager

Perception

Tracking

What you consume

 Focal point

 Targetable object

 Cover markup

 Interaction point

 Trigger volume

 Granularity is
Good!

Component matrix

Entities

Sniper

Heavy

Barrel

Terminal

Behavior
Tree

Tree
component

Tree
component

Pathfinding

Component

Component

Targeting
system

Targeting

Targeting

Target

Target

Target

Target

Movement
Controller

Movement

Movement

Cover

Cover Point

PUTTING IT BACK
TOGETHER

Substitution

Behavior Tree

Standard
movement

Perception

Pathfinder

Animation

Targeting

Substitution

Behavior Tree

Standard
movement

Perception

Pathfinder

Animation

Targeting

Big creature
movement

Substitution

 What did we gain?

 Wasn't enough to
ship but...

 Minimal investment

 Nice prototype

 Answered design
questions sooner

 Required:

 COM, signaling,
interface,
messaging

 Leverage hierarchy

 OOP under the CA

Find Via Registration

Target Selection Targetable

Find Via Registration

Target Selection Targetable

Targeting System

Find Via Registration

Target Selection Targetable

Targeting System

Find Via Registration

 What did we gain?
 Reduced search

space

 Scoping

 Simplify
construction of
behavior

 Required:
 Life-cycle

management

Late construction of types

Target Selection Targetable

Late construction of types

Target Selection Targetable

Late construction of types

 What did we gain?

 The ability to
change our minds

 Load balancing

 Try it everywhere

 Keep it where most
effective

 Required:

 Data driven(?)

 Light weight

Things to keep in mind

 Simplest affordances – greatest benefit

 Prefer small and light-weight CA

 Lots of little components

PERFORMANCE
& MULTI-THREADING

Part 3. Alex Champandard

You Must Be Wondering…

“How do you reconcile this modularity with
high performance on all hardware?”

Demo Interlude

 Example Component

 Influence Maps

 Come back at 3:00 for details!

High-Performance

 Vectorization

 Update 4x maps at a time with SIMD.

 Parallelization

 Run batches of 4x maps on multiple cores.

The Solution

 Build your Engine as modularly as Entities!

 Physics, Sensory, Reasoning, Behavior,
Navigation, Locomotion, Animation.

 Just assure the break-down is the same.

 It opens up opportunities for optimization.

Architecture

Entity 2

Entity 1 Engine Systems

Jobs

BREAKDOWN

Section 2.

Component: Configuration

Threat Type, Influence

HeavyEnemy = 4.0
RangedEnemy = 2.0
MeleeEnemy = 4.0
ScoutEnemy = 1.0

Component: Interface
class ReasoningComponent
{
public:
 void setEntityThreat(EntityId, float threat);
 void setAreaThreat(AreaId, float threat);

 float getAreaThreat(AreaId) const;

 /* … */

};

Component: Communication
class ReasoningComponent
{
public:
 void setEntityThreat(EntityId, float threat);
 void setAreaThreat(AreaId, float threat);

 float getAreaThreat(AreaId) const;

 /* … */

 typedef Delegate<void (float)> ThreatObserver;
 void notifyThreatLevel(float threshold, ThreatObserver);
};

Component: Life-Cycle

 Request new influence map on init().

 Or when entering combat state.

 Remove it on shutdown()

 Or when going into wounded state.

System: Batching & Prioritization

 Don’t process individual requests…

 Instead decides how to spawn jobs

 Group maps updated at same frequencies.

 Limit maximum number of jobs per frame.

System: Memory Allocation

 Manage memory for all influence maps.

 Customize allocation:

 Allocate 4x maps at a time!

 Interleave the float values for SIMD.

Jobs: Workload

 Implemented using SSE, Altivec.

 Process 4x maps at a time

 Output

 Influence Data

 Input

 Level Map

 Parameters

Jobs: Parallelism

 Jobs are isolated from each other.

 No communication or inter-dependencies.

 Can run in parallel if necessary.

SUMMARY

Section 3.

Components

1. Very lightweight

2. Simple interface

3. Handles events

4. Data-driven

Systems

1. Memory Allocation

2. Computation Limits

3. Batching

4. Prioritization

Jobs

1. Computationally heavy work

2. Easily parallelizable code

3. Clear interface w/ engine

Creating Your Building Blocks
Modular Component AI Systems

 Brett Laming, Rockstar Leeds

 Joel McGinnis, CCP

 Alex Champandard, AiGameDev.com

