

Q: What is the MK Memory Manager ?
A: Completely new Modern Memory Manager

developed with console ideology in mind.

 Spring 2011 Mortal Kombat

•  Memory Managers in our previous Game
•  Locking and Fixed-Backstore Issues
•  Multicore Awareness
•  General Architecture and Primary Hybrid

Heap
•  Small Block Memory Manager
•  Simple Lockfree Primitives and Allocators
•  Debug Support and Early-Init
•  Postmortem Summary

“MK vs DC” primarily used two memory
managers:

•  Unreal Memory Manager (FMalloc)
– Engine side resources
– C / C++ memory management

•  “Game” Memory Manager
– Game side resources
– Console oriented

•  LibC++ feature set
•  No multiple heap support
•  Not natively threadsafe / multicore

– Non-threadsafe memory allocators are protected
with a “global lock”

–  “MK vs DC” used DLMalloc internally
•  Some operations cause large stalls!

•  Not thread safe
•  Not “Virtual Memory Aware”

– Supported only static fixed backstore
•  Very Slow / O(N) ops
•  Fragmented Easily (naïve first fit)

•  Not multicore optimized
•  All operations can cause minor stalls or

context switches on other threads
•  Certain operations can cause large system-

wide stalls
– Large Application Alloc Requests
– Heap Backstore Allocations
– Realloc() operations

Lock

Lock
Q
U
E
R
Y

A
L
L
O
C

F
R
E
E

COPY

Stall
A
L
L
O
C

Thread 1

Thread 2

Realloc()

Alloc()

Loc
k

Lock

Lock
Q
U
E
R
Y

A
L
L
O
C

F
R
E
E

COPY

S
T
A
L
L

A
L
L
O
C

Thread 1

Thread 2

Realloc()

Alloc()

Q
U
E
R
Y

A
L
L
O
C

F
R
E
E

COPY

A
L
L
O
C

Thread 1

Thread 2 .. N

Realloc()

Alloc()

Fixed Backstore Leads to Fragments

Alloc Alloc Alloc
Memory

Fragmented
 Allocation

won’t fit

unused

Alloc Alloc Alloc

Virtual Memory “solves” Physical Fragmentation

Old School:
Static Fixed
Backstore

VM Aware:
Dynamic

Backstore
and Large
Allocations

Virtual Memory Pages

Physical Memory

Fixed Backstore

Physical Page
Remapped in

Virtual Memory

•  Threadsafe by default
•  Lock-free when possible (and straightforward)
•  Prefer Non-blocking locks when required

– Non-Exclusive Locks (ex: Reader-Writer)
– Fine-Grained Locking
– Striped Locking

•  High performance for single-threading as well
– Uncontested accesses do not pay a significant

penalty.

•  Make Thread-Safe and Multi-Core Optimized
•  Unify Separate MemMgr’s for Game and

Unreal Engine
•  Support multiple heaps with extra features
•  Improve performance (both CPU cycles and

Memory Usage Efficiency)
•  Common Tracking and Debugging Utilities

•  Heaps have minimal Thread “crosstalk”
•  Simultaneous allocations / frees from

multiple threads possible on a single heap (if
supported by heap type – most do!)

•  Backstore and Internal Heap Querying
operations typically operate concurrently
(using Lock-free, Striping or Reader-Writer
Locks)

•  Realloc ()’s NEVER block while copy occurs

Application

Virtual Memory Manager (OS)

Physical Memory File (PC Swap)

Phys Mgr

Heap

BS Mgr

Backstore* Hier BS Mgr

Hierarchical BS Hier Child Heap

OS Phys

BS Director Direct Mgr

Direct

Physical OS Heap Heap
Allocations seen
directly by App

•  Heap API uses virtual functions
– Common support API for Backstore and OS Allocs

•  Global Free() “knows” to which heap memory is returned

•  Easy to make different Heap Implementations
– Direct OS Heap
– Best Fit Heap (using Red-Black Tree)
– Small Block Heap (Lock-Free Alloc / Striped Free)
– Fixed Block Heap (Lock-Free – used for MK Game

Objects)

•  Primary Heap uses Hybrid approach to
handling allocations
– Large Allocations go directly through OS to

minimize fragmentation (but are tracked
internally)

– Medium Allocations go to a Best-Fit heap
– Small Block Allocations are handled by their own

heap
•  C++ new / delete & C malloc / free calls

routed to the Primary (Hybrid) Heap.

Virtual Memory Manager (OS)

“Hybrid” Primary Heap

BS Mgr

Backstore

Direct
Mgr

Large
Alloc

Medium
Alloc

Best Fit
Heap

OS
Pages

BS Mgr

Backstore

Small Alloc

SBMM
Heap

SBMM:
Small
Block

Memory
Manager

Thresholds:
Small <= 2K
Large >= 256K

Allocation Memory
Usage in MB's

Small (16.8
MB)
Medium
(37.5 MB)
Large (17.7
MB)

Allocation Count

Small
(118,905)
Medium
(3,994)
Large (33)

0

5000

10000

15000

20000

25000

30000

35000

16 32 64 128 256 512 1024 2048 256K LARGER

Allocation Counts by Power of 2 sizes up to 2K (and Medium & Large Allocs)

•  SBMM = Small Block Memory Manager
– Very low thread contention
– Supports many simultaneous operations
– Binning allocator

•  Sized Bins
•  Lock Striping = Lock Per Bin

– LockFree Alloc()* (*most of the time)
•  Lookaside cache uses “victim” blocks for lockfree

Allocs()
– Fast Stripe-Locked Free()

Quick Terminology
Bin = Everything related to Allocations of a Specific

Size
SuperBlock = Backstore Memory Chunk (from OS)
Block = Subdivision of SuperBlock. Either empty or

owned by a Bin (and containing many items, all of
the same size).

Item = Subdivision of Block (sized for a bin). Items
represent the actual memory returned from SBMM.

Victim = Lockfree Lookaside cache for a Block’s Items

“Victims” Look-aside Cache for Allocation
 Array of LockFree Lists of Items

BINS

 ITEM

LockFree
Item Lists

Virtual Memory Backstore Allocator

Superblock (BS) Superblock (BS)

Block

SBMM Heap

Block

item
Item

BIN

Victim

Lock

In-Use Blocks

Exhausted Blocks

•  Mostly LockFree Alloc ()
– LockFree freelist cache of “Victim” Block’s Items
– When empty, Bin striped-lock is acquired and

new freelist is established from next Block with
free Items

– This is a very fast operation until all the Blocks
are exhausted.
•  In this rare case, a new Block must be taken from the

SuperBlocks and a freelist initialized for the items. If
all the SuperBlocks are exhausted, a new SuperBlock
is requested from OS.

•  Free()
– Originally LockFree but required Delayed GC
– Striped Lock == Easy Trimming (No Delayed

GC)
•  Find Block & Bin Size and Fast-Lock Bin
•  Push memory item and check count
•  *If Trimming required, pull Block, Release Lock, Trim
•  Otherwise Release Lock
•  Uncontested case is very similar to LockFree speed
•  Striped so normally Uncontested

•  AtomicPair is your friend. Allows you to
access a pair of words atomically (read /
write / CAS)

•  Useful for a making a whole class of simple
allocators LockFree and Multicore friendly
– All allocators which use only two variable

updates for control words
•  Concurrent FreeList (SLIST) [Head / ABA-Sequence]
•  Slab Allocator [Write-Pointer / Remainder]
•  Ring-Buffer [Read-Pointer / Write-Pointer] *

•  SLIST is a LockFree Singly-Linked List
–  Implemented in the Windows API
– Very simple to roll your own (it’s a good “hello

world” for teaching LockFree programming)
– Clever trick: Incorporate counter into ABA-

Sequence for “free”
•  Example 32-bit Sequence starts at 0
•  Add 0x00010001 for Push
•  Add 0x0000FFFF for Pop
•  Bottom 16 bits == item count (up to 64K)

Used for simple control structures in
the MK Memory System.

NR Pool

Backstore
(Atomic Slab) SLAB MEMORY

FreeList
(Atomic Slist)

FreeList
(Atomic Slist)

Application

SIZED

PERM

•  Heap Validation Functions
•  Memory Pattern Support (0xDEADBEEF et al)
•  Basic Statistic Gathering
•  Debug builds have extra heap integrity checks
•  Debug Tracking can record all allocations

– Exported to a file automatically on Out-of-Mem
– Can track by specified “bins” or timed bread-crumbs

•  Memory visualization tool: allocs & stack traces

•  Memory system must be initialized before C+
+ global constructors run if they call “new”.

•  Construct-on-First-Use (COFU) has penalties
for both implicit and explicit versions.

•  Use Early-Init instead:
 GCC: __attribute__ ((init_priority (N)))
 MSVC: #pragma init_seg(X)

•  Underestimating amount of work
– 10 months development prior to “live”

deployment
– 3 months up front writing support libraries alone

•  Initial attempts at SBMM table sizing
– Powers of 2 and Sparse Tables wasted memory

•  Debug features had unclear messages
– Asserts to trap memory corruption conditions led

to many “crash in the memory system” reports
that were flaws in game code

•  Overall architecture
– 3 Level Hybrid Heap approach for main allocator

•  Building a library of multicore primitives
– Now used by Rendering and Job Graph as well

•  Building in additional debugging features
•  Fairly easy to share with other projects

– Example: 4 days to integrate without help
•  Overall we are very pleased with the new

system

Contact Info:
Adisak Pochanayon
Principal Software Engineer
Netherrealm Studios
adisak@wbgames.com

