
Addressing Human Scalability Through 
Multi-User Editing Using Revision Databases
John Rittenhouse

johnr@ccpgames.com



Overview

• Introduction

• The Problem

• The Solution

• Revisioned Database Overview

• System Implementation Overview

• Examples

• Performance Hotspots

• Issues

• Summary



Who is CCP?

• Independent MMO Company with 600 employees

• Three MMO Projects
– EVE – Sandbox space ship game with ~370k subscribers, 65k PCU

– Dust 514 – FPS MMO set in the EVE Universe on the PS3

– World of Darkness – MMO based on the White Wolf Property

• We need robust game editing solutions



Why address content scalability?

• Customers are seeking larger and more detailed gaming 
worlds

• Content teams are becoming larger
– Generalist approach to content creation

• General level designers focusing on smaller and smaller areas

– Specialist approach to content creation

• Level designers, lighters, scripters, etc.

• Results in user clashing

– Locked out files

– Unable to see what others are doing



Possible Solutions

• Mergable File Formats
– YAML or other text based file formats

– Issue: Will often require a programmer to help merge

• Layered Levels
– Different parts of the levels

– Issue: Often different users will work on the same part and can’t see 
the changes that other users have made but have not submitted or 
synced to latest

• Realtime Multiuser Editing
– Changes by users are visible to other users in real time

– Issue: More complex to implement than other options



Multiple Users Editing Simultaneously



Minecraft Example



Problems to Tackle

• Synchronization of data amongst users

• How to lock the data

• Alerting systems of other user changes



CCP’s Problems to Tackle

• Minimal server reboots (Live Editing)

• Multiple users editing the same area

• Backwards compatible with existing database tables

• Support potentially up to 100 content developers

• Ease of use for programmers
– Transparent

– Efficient

• System tolerable of high latency
– Has to handle Trans-Atlantic latency

• Needs to be implemented in Stackless Python



Possible Implementations of MultiUser Editing

• Server Authoritative Editing
– Server would know immediately when changes occurred

– Relies on the server always being up for content developers

• Revisioned Database
– Allows multiple users to see the same set of changes

– Have to design an easy API to use



What are Revisioned Databases?

• Think of them as version control for databases

• Similar concepts as version control
– Submitting/Reverting

– Changelists

– Locking

• Rows are your atomic unit



Revisioned Database Tables

• Revision Table
– Tracks all revisions and in which table and key did they occur with

– Each of them has a changelist id they are in

• Changelist Table
– Tracks all the changelists and whether they have been submitted

• User Table
– Who can edit the data

• Recent Changes Table
– Tracks all recent changes for polling purposes

• Data Tables
– Table with all the changes



Data Table Example

• Lets say we are labeling fruit

• So our columns for this table will be fruitID and fruitName

• Need also revisionID and changeType



Data Table Example

revisionID fruitID fruitName changeType

0 0 Apple Add

revisionID fruitID fruitName changeType

0 0 Apple Add

Table View



Data Table Example

revisionID fruitID fruitName changeType

0 0 Apple Add

1 0 Fuji Apple Edit

revisionID fruitID fruitName changeType

1 0 Fuji Apple Edit

Table View



Data Table Example

revisionID fruitID fruitName changeType

0 0 Apple Add

1 0 Fuji Apple Edit

2 1 Grape Add

revisionID fruitID fruitName changeType

1 0 Fuji Apple Edit

2 1 Grape Add

Table View



Data Table Example

revisionID fruitID fruitName changeType

3 0 Red Delicious Edit

2 1 Grape Add

Table View

revisionID fruitID fruitName changeType

0 0 Apple Add

1 0 Fuji Apple Edit

2 1 Grape Add

3 0 Red Delicious Edit



Data Table Example

revisionID fruitID fruitName changeType

0 0 Apple Add

1 0 Fuji Apple Edit

2 1 Grape Add

3 0 Red Delicious Edit

4 2 Raspberry Add

revisionID fruitID fruitName changeType

3 0 Red Delicious Edit

2 1 Grape Add

4 2 Raspberry Add

Table View



Data Table Example

revisionID fruitID fruitName changeType

0 0 Apple Add

1 0 Fuji Apple Edit

2 1 Grape Add

3 0 Red Delicious Edit

4 2 Raspberry Add

5 1 Grape Delete

revisionID fruitID fruitName changeType

3 0 Red Delicious Edit

4 2 Raspberry Add

Table View



Locking

• Locks occur on a row level
– Only one user is allowed to change a row at a time

• If a row is not in a submitted change list then it is a locked 
row.

• Database should reject any changes on locked rows by other 
users



Syncing

• Copies data from one DB to another DB

• Filtered on
– Submitted/Unsubmitted Changelists

– Revision Number

– Branch



Branching

• Works on the same database instead of trying to merge two 
databases together

• Change lists can be assigned to a particular branch

• Uses a promotion branch model



Brief Revisioned Database Summary

• Row changes
– Tracked and stored with revision number and change list

– Can be submitted or reverted through a change list

– Rows are locked to other users till their associated change list are 
submitted or reverted

• Change Lists

• Syncing

• Branching



Handling Updates

• Remote Updates - Poll Recent Revisions Table
– Retrieves table and keys of rows since last check

– Tables informed to update those rows

• Scatter Update Events on Local/Remote Changes
– Alerts systems that are listening to the table, rows, and columns that 

changed with previous and new values

– Originally just alerted about tables and rows but not the actual data 
values that were changed (made it hard for systems to minimize 
processing) 



CCP’s Revisioned Database System

• Called Branched Static Data (BSD)
– Developed originally by Jörundur Matthíasson

• Beyond the Database we added layers to Python to ease 
usage by other programmers



Layer Overview

DB Tables

BSD Layer

BSD Table Service

BSDTable

BSDRow

Database

Python



Branched Static Data (BSD)

• Internal CCP Revisioned Database
– Uses views to remain backwards compatible

– Made of SQL tables, views, and stored procedures

• Per Row Operations
– Add/Edit/Delete

– Rows Locked to Single User

• Submit/Revert

• History of Changes
– Table with all Changes

– View with most recent

• Branching/Syncing

• Recent Revisions Table

DB Tables

BSD Layer

BSD Table 
Service

BSDTable

BSDRow



BSD Table Service

• Holds references to each table
– Each table is a Python Class

– GetTable function

• Responsible for Table Updates
– Polls recent revisions table

– Alerts tables

– Handles update tasklets

DB Tables

BSD Layer

BSD Table 
Service

BSDTable

BSDRow



BSDTable Class

• Loads the Table Data
– Loads row data into BSDRows

– Responsible for Indexing

• Holds references to the Rows
– GetRowByKey

– GetRows (Filtering)

• Handles Adding/Deleting of Rows
– AddRow

– DeleteRow(s)

DB Tables

BSD Layer

BSD Table 
Service

BSDTable

BSDRow



BSDRow Class

• Handles the data at the row level

• Columns accessed via Properties
– print row.columnName

– row.columnName = 2

• Responsible for data editing
– Threading

– Merging edits (bucketing)

DB Tables

BSD Layer

BSD Table 
Service

BSDTable

BSDRow



Example – Table Definition

Schema Table Name Label Key ID 1 Key ID 2



Example – Python Code

Output
Setting 'Ball' to the origin
Found 302 objects with the name 'chair_wood_windsorRes'
Added an object to worldSpaceID 8 with objectID 33 , but deleting it now



Performance Hotspot - Filtering

• Indexed on Columns
– Initially indexed into lists but swapped to sets

• Relational databases uses set theory to be fast so lets do the same

– Choosing columns to index on

• Used to use the DB to filter if our data isn’t fully loaded
– Resulted in a short term boost for a longer

• Future Changes
– Case insensitive & delete/nondeleted Indexing

– Caching/filtering using SQLite



Performance Hotspot - Transactions

• Operations often involve multiple rows
– Adds often depend on the keys of previous adds

– Occurs when there is a main table plus additional optionable tables

– DB Latency makes waiting on responses to slow

• Allows merging of all BSD operations in a tasklet into a single 
DB query

• Provides traditional benefits of entire operations written at 
once to DB

• Easy to Use
– TransactionStart()/TransactionEnd(transactionName)

– with bsd.Transaction(transactionName): 



Common Pitfalls for Programmers

• Writing Cacheless Algorithms
– Relies on BSD Table Services for caches

– Makes creating live systems easier

– Often results in higher order algorithms

• Assuming Data is Loaded Transaction Based
– Data written as a transaction isn’t guaranteed to be loaded in a single 

operation

– Possible Solutions

• Allow checking to see if a full Recent Revision Update is completed

• Actually Setup Loading to be transaction based



Issues – Promotion Branching

• We have moved from a promotion to mainline branch model

Branch A

Branch B

Branch C

Branch D

Main

Branch 1 Branch 2

Branch 2.1 Branch 2.2Branch 1.1

Promotion Branching Mainline Branching



Issues – Promotion Branching

• Causes issues with non-backwards compatible changes 
necessary in other branches
– Handled with scripts to move the static data between branches

• Interlinked data needs to be set to the same branch
– Hard to determine the issues without validation

– Weird Testing flag which makes the issue even worse



Replacing with a Mainline Branch Model 

• Databases
– Main Database

• Responsible for all table ID’s

– All other DB’s derive from the Main DB

– Databases will correspond to the equivalent Perforce Branch

• Code and Databases will be integrated together
– Databases track the change list number they have been integrated 

from and to

– Table merges occur automatically except for row conflicts

– Conflicts at the row resolved by choosing one side or the other

– Does not handle all potential issues



Summary

• Revisioned Databases work well for multiuser editing
– Locking is often handled automatically within them

– Easy to determine changes

• Ease of use is important for programmers

• For a large project assume the programmer won’t know what 
you consider to be the “normal” use case 
– Optimize based on use cases (programmers learn by example)

• DB branching model needs to match the code branching



CCP Is Hiring

Apply online at http://www.ccpgames.com/en/jobs.aspx

Jobs available in

Atlanta, USA

Reykjavik, Iceland

Shanghai, China

http://www.ccpgames.com/en/jobs.aspx
http://www.ccpgames.com/en/jobs.aspx

