Game Developers Conference™ Europe 2011
August 15-17, 2011 | Cologne, Germany
www.GDCEurope.com

Hanéliing Many Platforms with a
Small Development Team

Dietmar Hauser
Head of Console Technology, Sproing

ey

S S S
Game Developers Conference™ Europe 2

= ":—4";4
011

About Sproing
* Based in Vienna, Austria
* Work for hire on all platforms
* Independent for over 10 years!
* More than 50 titles shipped! § =

spvo'mg

—J 3 — =S VITA XBOX 360
Wii NINTENCOYS, NNTENCO IS PC co-roM @

: . : p A T R
ame Developers Conference™ ope 2(& i ~ August15-17,2011 | www.GDCEurope.ce
KRR AT I =T el '."'1 Sk At ca Va2 i Sy olls = £ S ey TSP

ety

What the publisher wants

An awesome game that sells very well
Sell it on as many platforms as possible
Get it delivered on time or earlier

Spend as little money as possible

What we have

* Asmall team
— 1-n Designers, Artists, Producers
— 1-10 Programmers

* Many platforms
— 2-n Consoles / PC / Phones / Tablets...

» Atight schedule
— And all platforms finished at the same time

Game Developers Conference™ Europe 2011 August15-17, 2011 | www.GDCEurope.com

Possible Solutions

* Spend more money
— By extending time and/or growing team
— Very risky for everyone involved
— Results in death marches and bankruptcies

* Develop all platforms simultaneously
— Pretty difficult, but possible

— Everything needs to be shared between
platforms as much as possible

Challenges

 Different platform capabillities
— Several asset fidelities required
— Gameplay differences (i.e. controls)
— Code performance differences

 Different APIs

— No good standards (not even POSIX)
— ,Close to the metal® APIs

Game Developers Conference™ Europe 2011

Sharing Code / Abstraction

« Share only what can be shared well

* Don't force abstraction
— Can get too complicated
— Hides actual behaviour
— Hides bugs / performance problems

* Seperate what doesn't fit together

Examples

« Easy to abstract
— File 1/0, Memory, Network, Threading,...
— Textures, Meshes,...

* Tricky, but possible

— Rendering, Controls,...
— Save Data, DLC,...
* Very tricky, almost impossible

— Peripherals like Kinect, Move, Wiimote,...
— Unique platform features

Game Developers Conference™ Europe 2011 August15-17, 2011 | www.GDCEurope.com

Ways to abstract code

* Preprocessor directives
— Most obvious and basic way
— Unused code is discarded
— Hard to read - Error prone

#if PLATFORM A
DoStuffPlatformA() ;

#elif PLATFORM B
DoStuffPlatformB() ;

#else

#ferror Unsupported Platform
#endif

Game Developers Conference™ Europe 2011 N August1517,2011 | www.GDCEurope.com

Ways to abstract code

» Pointer to Implementation (PIMPL)
— Common, clean and useful
— A lot to type and virtual function call overhead

class Foo {
void DoIt() { impl->DoIt(); }
FooImpl* impl;

}s

class FooImpl {
virtual void DoIt() = O0;
};

#if PLATFORM A
class FooImplA ({
virtual void DoIt() { DolItPlatformA(); }
};
#fendif

Game Developers Conference™ Europe 2011 , : August15-17, 2011 | wiww.GDCEurope.com

Ways to abstract code

 Templated PIMPL

— Similar functionality to classic PIMPL
— Less to type, less overhead

template <class FooImpl>

class FooBase {
void DoIt() { impl->DoIt(); }
FooImpl* impl;

};

#if PLATFORM A
class FooImplA ({
void DoIt() { DoItPlatformA(); }

};

typedef FooBase<FooImplA> Foo;
#endif

Game Developers Conference™ Europe 2011 August15-17, 2011 | www.GDCEurope.com

Ways to abstract code

* Master header files

Platform specifics can be exposed
_east to type, zero overhead
Danger of code multiplication

// Foo.h
#if PLATFORM A

#include ,FooA.h“
#elif PLATFORM B

#include , FooB.h“
#else

#ferror Unsupported Platform

#endif

Ways to abstract code

* There are many many other ways...
—.Inl files
— Layered abstractions

* No best way, so mix and match

* Don't be afraid to change it while you can

Game Developers Conference™ Europe 2011

Compiling & Linking

« Each platform has a different toolchain
— Luckily, they‘re all command line tools
— Accept the same source code (mostly)
— Need different parameters
— Print different diagnostics

« Some platforms have a VS integration
— Which is usually pretty bad...

Jevelopers Lonference " Europe c011

Compiling & Linking

* Use a build tool
— Make, omake, jam, ant, scons,...

 Or roll your own VS integration
— This is what we did...
— ... and it's simpler than you might think

Introducing ClWarrior

 Lets Visual Studio compile all platforms
— Replaces cl.exe, link.exe and lib.exe
— Translates arguments ™ v =

- & - 5L | b Debug

— Translates diagnostics &= " =

& | TextureBase.h | TextureBase.cd, »

* Very straightforward for new employees
— Code on windows
— Change platform to anything
— Build!

- SN y
Game Developers Conference™ Europe 2011 August1517, 2011 | www.GDCEurope.com

CiWarrior Challenges

* Visual Studio dependency check fails
— Because it relies on a proprietary file (.idb)
— S0 we wrote our own (it's pretty simple)
— And hooked it up using an Add In

* Adding new platforms Is not supported

— Except for smart phones...
— ,WCE.VCPIlatform.config® can be hijacked

* Debugging still needs the platform tool
— Unfortunate, but acceptable

Keeping the code alive

* There are a lot of code configurations

— We use Debug, Release and Master
— With 4 platforms that's 12 builds

* Checking all of them is difficult
— Build is broken very often
— Everyone gets frustrated
— Code commits slow down

Solutions

« Continous Integration (ClI)
— All code is built all the time
— Broken builds get reported immediately
— And hopefully fixed immediately

* Unit Tests
— Can be run automatically
— Can detect regressions
— Are very useful when porting to new platforms

Game Developers Conference™ Europe 2011

More Solutions

« Static Code Analysis
— Can also be run automatically
— Can detect a lot of potential and real bugs
— But can be difficult to set up

* Production QA

— Ensures quality during production

— Problems are uncovered at an early
— Can prepare for final QA

— Usually an overall cost reduction

Assets

Dependent on the platform combination

Start with the highest fidelity assets
— Scaling down is easier than scaling up

Split assets at the latest possible time
— Most changes affect all versions

Leverage automated downscaling
— Textures are obvious candidates

v la&{??i?r 011 | www.GDCEurope.com

Asset Conversion

« Automate It!
— Everything is else is too error prone!
— The build tools mentioned earlier can help
— We use a selfmade rule based system
« Speed it up!
— To decrease Iteration time

— Easiest way is to do it on one machine and
distribute it to everyone else's

Surviving Certification

* Learn, implement and test the
requirements early

 Make sure everyone in the team Is aware
of the requirements
— Most of them are actually NOT technical

» Take advantage of pre-cert passes

Certification Tips

 Never stall the render thread
— File I/O is usually to blame

 Make sure your game can be paused at

any time
— And resumed, of course...

« Watch out for memory fragmentation
— Everything will work ok until the end

This iIs It...

Questions?

