
Orchestrator: A post-mortem on an
automated MMO testing framework
David Press

davidp@ccpgames.com

Who is CCP?

• 600 person company.

• Working on 3 AAA games.

• Eve Online – 370k subscribers, 65k PCU

• Dust 514 – Upcoming FPS integrated with Eve.

• World of Darkness – Upcoming MMO.

What is Carbon?

• Shared technology platform.

• Used in all 3 games.

• Developers of all 3 games work in the same branch.

• 121 programmers

• Updated Carbon code is immediately used in all 3
games.

How do we manage this chaos?

• Too much work to test all 3 projects in all
configurations whenever Carbon code is changed.

• Automated testing

• Immediately tells us what broke.
• How it broke.

• Who broke it.

• View test history and logs from each test
• Catch low probability bugs.

• Programmers can shelve CLs and get all automated
tests to run on them before checking them in.

Types of Automated Testing

• Unit Testing

• Component Testing

• System Testing

Types of Testing

• Unit Testing

• Component Testing

•System Testing

Overview

• What makes testing MMOs unique?

• 2 demos of our framework, Orchestrator, in action.

• Architecture of Orchestrator.

• Lessons Learned

Overview

• What makes testing MMOs
unique?

• 2 demos of our framework, Orchestrator, in action.

• Architecture of Orchestrator.

• Lessons Learned

Testing an MMO

• How do you automate a client-server, distributed,
persistent, sharded, asynchronous, realtime, scalable
system?

Very Carefully

MMO Architecture Overview

• Client/server

Server

Client

Client Client

MMO Architecture Overview

• Distributed system

Server

Server Server

MMO Architecture Overview

• Persistent Storage

MMO Architecture Overview

• Shards

Server

Server Server

Server

Server Server

Server

Server Server

MMO Architecture Overview

• Asynchronous – Even harder than multithreaded.

Client Server
Forward key pressed

Position updated

MMO Architecture Overview

• Realtime Simulation

Update
Actions

Update
Physics

Update
Animation

Update
Graphics

MMO Architecture Overview

• Scalable

Server

Server

Server

Server

Server

Server

Server

Server

CCP MMO Architecture

Overview

• What makes testing MMOs unique?

• 2 demos of our framework,
Orchestrator, in action.

• Architecture of Orchestrator.

• Lessons Learned

Demo 1

• Networked movement

• 2 clients, 1 server, 1 proxy.

• Log both clients into the same worldspace.

• Move client 2’s player a few meters.

• On client 1, check if client 2’s player is at the same
position as it is on client 2.

Demo 1

Demo

networkedmovement.mp4

Demo 1

• Two ways to write this test

• Write a script for each client, communicate between
them to order their operations correctly.

Yuck.

• Write a single master script that communicates the
relevant operations to the clients in sequence.

More familiar programming model.

Easier to read the code.

Code for Demo 1

class NetworkedMovementTests(systemTest.TestCase):

 __clients__ = ["client1", "client2"]

def setUp(self):

 systemTest.TestCase.setUp(self,

 waitForGraphics=True,

 worldSpaceID=TEST_WORLD_SPACE_ID)

Code for Demo 1

class NetworkedMovementTests(systemTest.TestCase):

 __clients__ = ["client1", "client2"]

def setUp(self):

 systemTest.TestCase.setUp(self,

 waitForGraphics=True,

 worldSpaceID=TEST_WORLD_SPACE_ID)

Standard
jUnit
interface

Code for Demo 1

class NetworkedMovementTests(systemTest.TestCase):

 __clients__ = ["client1", "client2"]

def setUp(self):

 systemTest.TestCase.setUp(self,

 waitForGraphics=True,

 worldSpaceID=TEST_WORLD_SPACE_ID)

Start two
clients

Code for Demo 1

class NetworkedMovementTests(systemTest.TestCase):

 __clients__ = ["client1", "client2"]

def setUp(self):

 systemTest.TestCase.setUp(self,

 waitForGraphics=True,

 worldSpaceID=TEST_WORLD_SPACE_ID)

Run for each test in this suite

Code for Demo 1

class NetworkedMovementTests(systemTest.TestCase):

 __clients__ = ["client1", "client2"]

def setUp(self):

 systemTest.TestCase.setUp(self,

 waitForGraphics=True,

 worldSpaceID=TEST_WORLD_SPACE_ID)

Utility function to make server and
clients log in to given worldspace and
wait until all graphics are loaded

Code for Demo 1

SystemTestUtils.TeleportPlayerTo(self.client1,

 (0,0,0))

SystemTestUtils.TeleportPlayerTo(self.client2,

 (2,0,0))

Code for Demo 1

SystemTestUtils.TeleportPlayerTo(self.client1,

 (0,0,0))

SystemTestUtils.TeleportPlayerTo(self.client2,

 (2,0,0))

Teleport
players next
to each other

Code for Demo 1

def testClient1CanSeeClient2Move(self):

 SysTestUtils.PlayerMove(self.client2, 5.0,

 timeToWait=30000)

Code for Demo 1

def testClient1CanSeeClient2Move(self):

 SysTestUtils.PlayerMove(self.client2, 5.0,

 timeToWait=30000)

A particular
test

Code for Demo 1

def testClient1CanSeeClient2Move(self):

 SysTestUtils.PlayerMove(self.client2, 5.0,

 timeToWait=30000)

Move the player for client2 5.0 meters and wait up to 30
seconds for her to get there

Code for Demo 1

SysTestUtils.TestEntitySync(self.client2.charid,

 self.server,

 self.client2,

 maxDist=0.1,

 timeToWait=30000)

Code for Demo 1

SysTestUtils.TestEntitySync(self.client2.charid,

 self.server,

 self.client2,

 maxDist=0.1,

 timeToWait=30000)

Check if the position of player2 on
client2 is within 0.1m of the position of
player2 on the server, waiting up to 30s

Code for Demo 1

SysTestUtils.TestEntitySync(self.client2.charid,

 self.server,

 self.client1,

 maxDist=0.1,

 timeToWait=30000)

Code for Demo 1

SysTestUtils.TestEntitySync(self.client2.charid,

 self.server,

 self.client1,

 maxDist=0.1,

 timeToWait=30000)

Check if the position of player2 on
client1 is within 0.1m of the position of
player2 on the server, waiting up to 30s

Code for Demo 1

def setUp(self):
 systemTest.TestCase.setUp(self,
 waitForGraphics=True,
 worldSpaceID=TEST_WORLD_SPACE_ID)
 SystemTestUtils.TeleportPlayerTo(self.client1, (0,0,0))
 SystemTestUtils.TeleportPlayerTo(self.client2, (2,0,0))

def testClient1CanSeeClient2Move(self):
 SysTestUtils.PlayerMove(self.client2, 5.0, timeToWait=30000)
 SysTestUtils.TestEntitySync(self.client2.charid, self.server, self.client2,
 maxDist=0.1, timeToWait=30000)
 SysTestUtils.TestEntitySync(self.client2.charid, self.server, self.client1,
 maxDist=0.1, timeToWait=30000)

Code for Demo 1

def TestEntitySync(entID, app1, app2, maxDist=0.5,
 timeToWait=30000):
 def Synced():
 app1Pos = GetEntityPosition(app1, entID)
 app2Pos = GetEntityPosition(app2, entID)
 dist = geo2.Vec3Distance(app1Pos, app2Pos)
 return dist <= maxDist

 synced = WaitForCondition(Synced, timeToWait,
 pollTime = 100)
 assertTrue(synced, “Entity positions are desynced”)

Code for Demo 1

def TestEntitySync(entID, app1, app2, maxDist=0.5,
 timeToWait=30000):
 def Synced():
 app1Pos = GetEntityPosition(app1, entID)
 app2Pos = GetEntityPosition(app2, entID)
 dist = geo2.Vec3Distance(app1Pos, app2Pos)
 return dist <= maxDist

 synced = WaitForCondition(Synced, timeToWait,
 pollTime = 100)
 assertTrue(synced, “Entity positions are desynced”)

Local function to
test if the positions
match

Code for Demo 1

def TestEntitySync(entID, app1, app2, maxDist=0.5,
 timeToWait=30000):
 def Synced():
 app1Pos = GetEntityPosition(app1, entID)
 app2Pos = GetEntityPosition(app2, entID)
 dist = geo2.Vec3Distance(app1Pos, app2Pos)
 return dist <= maxDist

 synced = WaitForCondition(Synced, timeToWait,
 pollTime = 100)
 assertTrue(synced, “Entity positions are desynced”)

Get position of this
entity on client and
server

Code for Demo 1

def TestEntitySync(entID, app1, app2, maxDist=0.5,
 timeToWait=30000):
 def Synced():
 app1Pos = GetEntityPosition(app1, entID)
 app2Pos = GetEntityPosition(app2, entID)
 dist = geo2.Vec3Distance(app1Pos, app2Pos)
 return dist <= maxDist

 synced = WaitForCondition(Synced, timeToWait,
 pollTime = 100)
 assertTrue(synced, “Entity positions are desynced”)

Wait until Synced
returns True

Code for Demo 1

def TestEntitySync(entID, app1, app2, maxDist=0.5,
 timeToWait=30000):
 def Synced():
 app1Pos = GetEntityPosition(app1, entID)
 app2Pos = GetEntityPosition(app2, entID)
 dist = geo2.Vec3Distance(app1Pos, app2Pos)
 return dist <= maxDist

 synced = WaitForCondition(Synced, timeToWait,
 pollTime = 100)
 assertTrue(synced, “Entity positions are desynced”)
 Assert if positions

don’t match after
timeToWait ms

Code for Demo 1

def GetEntityPosition(app, entID):

 ent = app.entityService.FindEntityByID(entID)

 return ent.GetComponent(“position”).position

Demo 2

• Transferring between servers.

• 1 client, 2 servers, 1 proxy.

• Set up server 1 to be responsible for worldspace 1,
and server2 for worldspace 2.

• Log client into worldspace 1.

• Walk through portal to worldspace 2.

• Check that client’s player is in worldspace 2 on client
and in worldspace 2 on server 2 and not in
worldspace 1 on server 1.

Demo 2

 Demo

multinode.avi

Overview

• What makes testing MMOs unique?

• 2 demos of our framework, Orchestrator, in action.

• Architecture of Orchestrator.
• Lessons Learned

Single Script – Multiple Programs

• Need architecture for having a single script control
multiple programs.

Orchestrator Architecture

Master

Agent

Slave/Proxy Slave/Server

Slave/Server

Agent

Slave/Client Slave/Client

Slave

• Runs in the process of the proxy/server/client.

• Hooks to access any part of the app.

Agent

• Runs on each machine that a slave runs on.

• Starts/stops slave apps.

• Relays messages to/from slave apps.

• Passes exceptions back to master.

Master

• Executes the test script, sending commands to
agents.

• GUI for selecting which test(s) to run and reporting
errors and failures.

Single Script – Multiple Programs

• How do you make the test script look like normal
single-process code?

• Python!

 self.client1.fooService.FooMethod()

• How do you deal with a test that is twiddling a
“complex” object?

How Python makes this easy

• ObjectWrapper class

 Stores objectID, nodeID

 Implements __getattr__, __setattr__, __call__, __eq__,
__neq__

__getattr__ and __call__ return the appropriate object
inside of another ObjectWrapper

How Python makes this easy

• In our teleport function, we used to have the
following code to wait on the master until the player
was teleported to a new scene:

while player.scene.sceneID != targetSceneID:

 sleep(1.0)

How Python makes this easy

• player.scene

__getattr__(“scene”)
->
ObjWrap(sceneObjectID,
 nodeID)

Master Slave

playerObjectID ,
get, “scene”= 2

playerObj = cache[playerObjectID]
sceneObj = playerObj .__getattr__(“scene”)
sceneObjectID = hash(sceneObj)
cache[sceneObjectID] = sceneObj
return sceneObjectID sceneObjectID

How Python makes this easy

• player.scene.sceneID

__getattr__(“sceneID”)
->
sceneID

Master
sceneObjectID,get,
“sceneID”= 3

Slave

sceneObj = cache[sceneObjectID]
sceneID = sceneObj.__getattr__(“sceneID”)
return sceneID

sceneID= 3

This makes asynchronicity problems
worse

• Every “.” is a round-trip from master to slave

• player.scene.sceneID

Any amount of time could pass between getting the
“scene” and then trying to grab the sceneID off of it.

‒ Scene unloaded

‒ clientPlayer removed from scene

Make it deterministic

• Could write a function on the slave that just does the
same loop and call that from master.

• Listen to events that the client is already sending out
for internal use (with a timeout):

client.RegisterEventCallback(“OnEntityTeleport”, self.OnEntityTeleport)

Overview

• What makes testing MMOs unique?

• 2 demos of our framework, Orchestrator, in action.

• Architecture of Orchestrator.

• Lessons Learned

Don’t Test Everything

• Only test basic functionality of each major system or
maintenance burden becomes too high.

• Can I move?

• Can I punch?

• Can I chat?

• Can I join a group?

• World of Darkness project used to have around 120
system tests. Now it has about 40.

Avoid implementation details

• Do not directly inspect implementation details of
systems your are testing.

• In an asynchronous system, not only will your test be
broken by changes to the implementation, but also
by changes in the timing.

Utility Functions

• Build up a library of high-level, well-tested functions
that can be used in lots of tests

CreateNPC

PlayerMove

 SelectEntity

PerformAction

Programmers write tests

• Programmer who wrote the system should write the
test for the system – not a separate QA Engineer.

• Writing tests for MMOs is hard and requires domain
knowledge of the system being tested.

• QA Engineers couldn’t keep up with changes to the
system and Programmers weren’t nice enough to
keep them informed.

Sleep is the devil

• Putting in a sleep for an arbitrary amount of time to
fix a bug is the sign of a race condition that is just
being avoided, not fixed.

• Make sure events are created for what you’re waiting
for and listen for them (with appropriate timeout).

Questions?

We’re Hiring!

http://ccpgames.com/jobs

