
Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

www.intel.com/software/gdc

Hotspots, FLOPS, and uOps:

To-The-Metal

CPU Optimization

Levent Akyil
Intel Corp.

http://www.intel.com/software/gdc

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Motivation:

2

Before After

Fast Code == More Stuff == More Fun

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Source Code Does Not Provide The Complete

Story

Example Optimization Tips:

“Use the return value optimization”

“Pass by reference instead of value”

“Use ++i instead of i++”

“cache intermediate computations”

“Unroll loops”

3

Without context, Ad hoc source code tips may result in random trial and

error.

Has this guy

studied your

code?

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

This Class Goes Beyond the Source Code

Agenda:

x86 Architecture

Program Execution Flow

AVX® SIMD

Easy Effective code patterns

Performance Tuning Workflow

Hotspot, Concurrency profiling

Events and Intel® VTune™ Amplifier XE

Walkthrough/Examples

4

Take the Guesswork out of Optimization!

You Are

Here

Intel® Microarchitecture

Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

von Neumann architecture

This is not your Grandfather‟s CPU

5

Intel® Microarchitecture

Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

- Cache (data and instr)

- Branch Prediction

- Out-of-order uOp Scheduling

- Wide Registers up to 256-bit

Key x86 Architecture Features for

Developers To Know

6

Intel® Microarchitecture
Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Cache Behavior Affects Performance

•Cost of Data Access increases
with Distance from CPU

•Programming Tips:

• Maximize work done on

cached data

• Work with Hardware

Prefetch (arrays vs linked

lists)

7

http://software.intel.com/sites/products/collateral/hpc/vtune/per

formance_analysis_guide.pdf

Where Data Is

Resident

Time to fetch data

Register 1 cycle

L1 Cache 4 cycles

L2 Cache 10 cycles

L3 Cache 40-75 cycles

Memory 60-100 ns

Cost of accessing data

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

- Cache (data and instr)

- Branch Prediction

- Out-of-order uOp Scheduling

- Wide Registers up to 256-bit

Key x86 Architecture Features for

Developers To Know

8

Intel® Microarchitecture
Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Array Ordering branch max uOp

Monotonic 2.1 3.0

Pathological 9.8 3.0

Random 2.2 3.0

vmovss xmm1,dword ptr[eax]

vcomiss xmm0,xmm1

jbe findmin+20h

vmovss xmm0,xmm0,xmm1

add eax,4

cmp eax, (0BFF3C0h)

jl findmax+12h

vmovss xmm0,dword ptr[eax]

add eax,4

vshufps xmm0,xmm0,xmm0,0

vmaxss xmm1,xmm1,xmm0

cmp eax, (0BFF3C0h)

jl findmax_intrin+16h

for(int i=0; i<4096; i++)

 m = max(m, x[i]);

BPU Helps (when predictable)

9

cycles per iteration

(lower is better)

Compiled using branch code Compiled using max instruction

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

- Cache (data and instr)

- Branch Prediction

- Out-of-order uOp Scheduling

- Wide Registers up to 256-bit

Key x86 Architecture Features for

Developers To Know

10

Intel® Microarchitecture
Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Test Code Measured* CPU
Cycles

SASPY for(int i=1; i<N; i++)

 s[i] = a * s[i-1] + y[i];

SAXPS for(int i=1; i<N; i++)

 s[i] = a * x[i] + s[i-1];

SAXPY for(int i=1; i<N; i++)

 s[i] = a * x[i] + y[i];

Understanding Out-Of-Order Execution

11

Comparison of 3 near-identical loops with different data access patterns

How would you expect these 3 loops to perform?

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Test Code Measured* CPU
Cycles

SASPY for(int i=1; i<N; i++)

 s[i] = a * s[i-1] + y[i];

14.0

SAXPS for(int i=1; i<N; i++)

 s[i] = a * x[i] + s[i-1];

9.0

SAXPY for(int i=1; i<N; i++)

 s[i] = a * x[i] + y[i];

2.2

Similar code, yet significant differences in

Performance

12

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Assembly Code Comparison

13

Assembly code:

for(int i=0;i<N;i++) // saxpy

 s[i] = a * x[i] + y[i];

vmovss xmm0,dword ptr X[eax]

vmulss xmm0,xmm0,dword ptr [A]

vaddss xmm0,xmm0,dword ptr Y[eax]

vmovss dword ptr S[eax],xmm0

add eax,4

cmp eax,1000h

jl saxpy+7 (13A1041h)

vmovss xmm0,dword ptr S[eax]

vmulss xmm0,xmm0,dword ptr [A]

vaddss xmm0,xmm0,dword ptrY+4[eax]

vmovss dword ptr S+4 [eax],xmm0

add eax,4

cmp eax,0FFCh

jl saspy+7 (13A10B5h)

for(int i=1;i<N;i++) // saspy

 s[i] = a * s[i-1] + y[i];

C source code:

SAXPY SASPY Same instruction sequence!

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Throughput != Latency

Operation Latency Throughput

+ - * rsqrt, rcp,

hadd, min,max

3-5 1

div, sqrt 14 14

sin,cos 160-200 130

move

load/store

>=1 .5

dot product 12 2

Instruction “cost” consists of two

important timings:

• Instruction Latency - time to

complete the operation and return

result

• Instruction Throughput - frequency

at which a new operation can be

issued

Eg: while waiting 5 cycles for a

multiplication to complete we can begin

5 other multiplication operations.

14

Note: This table is an extremely condensed version
of the Intel® Architecture Manual

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

How x86 Instructions Get Processed

Port # 0 1 2 3 4 5

Operations
(uOps)

* / + - Load Load Store Shuffle

ASM instructions => Uops

asm registers => physical registers

• uOps execute when ready

• Up to 1/port/cycle

• Data order dependent. i.e. Not

instruction order dependent

15

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

The Pipeline Slot Methodology,
Illustrated

Front-End

Fetch &
Decode

Instructions,

Predict
Branches

Back-End

Retirement

Commit
Results

to Memory

Execution
Core

Re-Order &
Execute

Instructions

Case 1: Front-End does not provide micro-operations
 for all 4 pipeline slots

Front-End Bound

Ø

Ø

Ø

µ-op

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Front-End

Fetch &
Decode

Instructions,

Predict
Branches

Back-End

Retirement

Commit
Results

to Memory

Execution
Core

Re-Order &
Execute

Instructions

µ-op

µ-op

µ-op

µ-op

Case 2: Back-End cannot accept micro-operations
 for all 4 pipeline slots

Back-End Bound

 Slot Methodology, Illustrated The Pipeline Slot Methodology,
Illustrated

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Front-End

Fetch &
Decode

Instructions,

Predict
Branches

Back-End

Retirement

Commit
Results

to Memory

Execution
Core

Re-Order &
Execute

Instructions

Case 3: Micro-operations make it to the Back-End, but
then get removed from the pipeline

Cancelled

µ-op

µ-op

µ-op

µ-op x

x

The Pipeline Slot Methodology,
Illustrated

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Front-End

Fetch &
Decode

Instructions,

Predict
Branches

Back-End

Retirement

Commit
Results

to Memory

Execution
Core

Re-Order &
Execute

Instructions

Case 4: Micro-operations make it to the Back-End,
 Execute, and then Retire

Retired

µ-op

µ-op

µ-op

µ-op

The Pipeline Slot Methodology,
Illustrated

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

 s=ax+y decomposed into uOps

Output from Intel Architecture Code Analyzer (IACA)

20

Intel(R) Architecture Code Analyzer

Loop Throughput: 2 Cycles; Loop Latency: 14 Cycles;

| Num | Ports pressure in cycles

| Uops | 0 | 1 | 2 | 3 | 4 | 5 | Assembly Code

--

| 1 | | | 1 | _ | | | vmovss xmm0, ptr a

| 2^ | 1 | | _ | 1 | | | vmulss xmm0, xmm0, ptr x

| 2^ | | 1 | 1 | _ | | | vaddss xmm0, xmm0, ptr y

| 2^ | | | _ | 1 | 1 | | vmovss ptr s, xmm0

| 1 | _ | _ | | | | 1 | add eax, 0x4

| 1 | _ | _ | | | | 1 | cmp eax, 0x8000

| 0F | | | | | | | jl 0xffffffcc

|Cycles| 1 | 1 | 2 | 2 | 1 | 2 |

Note the range in throughput and latency

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Data Dependencies Explain the Disparity in

Performance

21

Test Code Measured* CPU Cycles

SASPY for(int i=1; i<N; i++)

 s[i] = a * s[i-1] + y[i];

14.0

SAXPS for(int i=1; i<N; i++)

 s[i] = a * x[i] + s[i-1];

9.0

SAXPY for(int i=1; i<N; i++)

 s[i] = a * x[i] + y[i];

2.2

(1.6 unrolled)

Notes:

• Range matches predicted latency and throughput times.

• 2nd loop can begin multiplication early

• 3rd loop (no dependencies) benefits further with compiler-generated loop unroll

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Reduce Dependencies to Maximize Throughput

22

Find Array
Maximum

Code Cycles

Standard
Solution

for(int i=0; i<N; i++)

 m = max(m,x[i]);

3.0

Loop
Unrolled

for(int i=0; i<N; i+=2)

 m = max(m,x[i]);

 m = max(m,x[i+1]);

3.0

Dependence
Reduced

for(int i=0; i<N; i+=2)

 m0 = max(m0,x[i]);

 m1 = max(m1,x[i+1]);

1.6

Dependence
Reduced Twice

for(int i=0; i<N; i+=4)

 m0 = max(m0,x[i]);

 ...

 m3 = max(m3,x[i+3]);

1.0

Note: x86 instruction VMAXSS has a latency of 3

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

- Cache (data and instr)

- Branch Prediction

- Out-of-order uOp Scheduling

- Wide Registers up to 256-bit

Key x86 Architecture Features for

Developers To Know

23

Intel® Microarchitecture
Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Quick Review: “SSE” SIMD 128 bit (4 floats)

24

Arithmetic:

 + - * / sqrt

Bitwise:

 & | ^

Transfer:

 load/store

 shuffle

Logical:

 < > (returns mask)

Conditional:

 blend (uses mask)

if-else statements handled by software

predication

+

ax ay az aw

bx by bz bw

ax+bx ay+by az+bz aw+bw

a

b

a + b

z

x y z w

x w y

Shuffle:

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

SIMD with AVX - up to 256 bit (8 floats)

25

+
a0 a1 a2 a3

b0 b1 b2 b3

a0+b0 a1+b1 a2+b2 a3+b3

+
a4 a5 a6 a7

b4 b5 b6 b7

a4+b4 a5+b5 a6+b6 a7+b7

a

b

a + b

+

 __m256 a,b,c;

 ...

 c = _mm256_add_ps(a,b);

C/C++ Intrinsics

• New instructions with 2nd

generation Intel Core CPUs

• Supports 128 and 256-bit

SIMD

• Non-destructive instructions

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

AVX SIMD applied to SAXPY

26

*Measured time is total time divided by N (N==2048)

Test Code Measured*
CPU Cycles / N

SAXPY
1 at a time

// float *s,*x,*y,a;

for(int i=0; i<N; i++)

 s[i] = a * x[i] + y[i];

2.2

SAXPY128
4 at a time

// __m128 *s,*x,*y,a;

for(int i=0; i<N/4; i++)

 s[i] = a * x[i] + y[i];

0.6

SAXPY256
8 at a time

// __m256 *s,*x,*y,a;

for(int i=0; i<N/8; i++)

 s[i] = a * x[i] + y[i];

0.3

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Array Maximum Example with AVX SIMD

27

Array

Maximum

Code Cycles

Serial

SIMD4

version

SIMD8

version

Standard

Solution

for(int i=0; i<N; i+=8)

m=_mm256_max_ps((m256*)(x+i));

 //m = max(m,x[i]);

3.0 0.73 0.36

Dependence

Reduced

for(int i=0; i<N; i+=2)

 m0 = max(m0,x[i]);

 m1 = max(m1,x[i+1]);

1.6 0.38 0.18

Dependence

Reduced

More

for(int i=0; i<N; i+=4)

 m0 = max(m0,x[i]);

 ...

 m3 = max(m3,x[i+3]);

1.0 0.26 0.13

Exploiting both SIMD and Instruction parallelism

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

SIMD Programming Patterns in Games

28

class Vec4

{

public:

 union {

 struct {float x,y,z,w;}

 _m128 v;

 }

};

inline Vec4 operator+(const Vec4 &a, const Vec4 &b)

{

 return Vec4(_mm_add_ps(a.v,b.v));

}

Typical “SSE” 4D Vector Class:

 ...

 Vec4 v = u + w ; // add two 4D vectors

 ...

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Scaling with 4D xyzw SIMD pattern

Real Results typically
~2X

• Not using all 4 flops

at each operation.

• Often used for 3D

data

• Shuffle overheads

• Instruction parallelism
sometimes lost

• Pattern doesn‟t Scale

to 256-bit (8float)
SIMD

29

x y z w x y z w

xx yy zz ww

3D/4D dot product

128-bit SIMD

*

+

+

x
y

z

x
y

z

xx
yy

zz

3D dot product

serial

+

+

*

*
*

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Another Way To Use SIMD is SOA

30

y0 y1 y2 y3 y4 …

x0 x1 x2 x3 x4 …

z0 z1 z2 z3 z4 …

Structure of Arrays in Memory (SOA)

Array of Structures in Memory (AOS)

w0 w1 w2 w3 w4 …

x0 y0 z0 w0 x1 y1 z1 w1 x2 …

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

C++ programming patterns for SOA

31

class Vec3<T>

{

public:

 T x;

 T y;

 T z;

};

Vec3<T> operator +(const Vec3<T> &a, const Vec3<T> &b)

{

 return Vec3<T>(a.x+b.x, a.y+b.y, a.z+b.z);

}

 ...

 Vec3<__m256> v = u + w; // 8 vector additions at a time

 ...

__m256 operator +(const __m256 &a, const __m256 &b)

{

 return _mm256_add_ps(a,b);

}

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Gather/Scatter - To SOA and Back!
Dealing With „Real‟ Application Data

32

Memory

Memory

Gather
Input xyz

Scatter
Result r

SIMD SOA

Parallelism Computation

x0 y0 z0

x1 y1 z1

x0

y0

z0

x1

y1

z1

x2

y2

z2

x3

y3

z3

r0 r1 r2 r3

r0 r1

r2 r3

scatter

gather

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

AVX 256-bit Programming Patterns - Gather/Scatter

Technique Example

Vec3<float> v[];

for(int i=0; i<N; i+=8) {

 Vec3<__m256> u = trans8x3(v+i);

 u = Normalize(u); // 8 at a time

 trans3x8(v+i,u);

}

• Linear Traversal of an Array

• Exploit regular access patterns

• Use x86 shuffle for Transpose

• Indexing/Indirection (Gather 8)

• Use 4 float xyzw data pattern

• Align Data (pad if necessary)

• 4x8 transpose

• SOA code patterns

• Indexing/Indirection (Gather 2)

• Use 4 float xyzw data pattern

• Use 256-bit as a way to Pair two 128-bit

computations

• AOS xyzw code patterns

Vec4<float> v[];

for(int i=0; i<N; i+=8) {

 Vec8<__m128> g(v[k[i]],…,v[k[i+7]]);

 Vec4<__m256> u = trans8x4(g);

 r = MyCompute<__m256>(u); // do 8

 ...

}

Vec4<float> v[];

for(int i=0; i<N; i+=2) {

 __m256 u(v[k[i]],v[k[i+1]]);

 r = MyComputePair(u); // 2 at a time

 ...;

}

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

i+1

i

M[0][0..3]

Pairing Two 128-bit Computations –
Transformation v[i]*M

Computation Flow

Results: 1.7X speedup compared

to 128 bit version

*

+

*

+

…

=

// Load M into both upper and lower halves of 256bit regs

__m256 m0 = _mm256_castps128_ps256(_mm_load_ps(M[0]));

__m256 m1 = _mm256_castps128_ps256(_mm_load_ps(M[1]));

__m256 m2 = _mm256_castps128_ps256(_mm_load_ps(M[2]));

__m256 m3 = _mm256_castps128_ps256(_mm_load_ps(M[3]));

m0 = _mm256_insertf128_ps(m0,_mm_load_ps(M[0]),1);

m1 = _mm256_insertf128_ps(m1,_mm_load_ps(M[1]),1);

m2 = _mm256_insertf128_ps(m2,_mm_load_ps(M[2]),1);

m3 = _mm256_insertf128_ps(m3,_mm_load_ps(M[3]),1);

for(int i=0;i<N;i+=2) // transform two 4D points per iter

{

__m256 v = _mm256_load_ps(V[i]);

__m256 a = _mm256_mul_ps(m0 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(0,0,0,0))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m1 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(1,1,1,1)))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m2 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(2,2,2,2)))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m3 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(3,3,3,3)))) ;

_mm256_store_ps(R[i],a);

}

x y z w

x y z w

Verts

x y z w x y z w

M[0][0..3]

x y z w

x y z w

x y z w

x' y' z' w' x' y' z' w'

x y z w

Output

x y z w

x y z w

x x x x x x x x

M[3][0..3] M[3][0..3]

w w w w w w w w

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

i+1

i

M

Pairing Two 128-bit Computations - Skinning Example

Computation Flow

Results: 1.4X speedup compared

to 128 bit version

for(int i=0;i<N;i+=2) // single-bone skinning example

{

__m256 v = _mm256_load_ps(V[i]);

int b0 = Bone[i];

int b1 = Bone[i+1];

__m256 m0 = _mm256_castps128_ps256(_mm_load_ps(M[b0][0]));

__m256 m1 = _mm256_castps128_ps256(_mm_load_ps(M[b0][1]));

__m256 m2 = _mm256_castps128_ps256(_mm_load_ps(M[b0][2]));

__m256 m3 = _mm256_castps128_ps256(_mm_load_ps(M[b0][3]));

m0 = _mm256_insertf128_ps(m0,_mm_load_ps(M[b1][0]),1);

m1 = _mm256_insertf128_ps(m1,_mm_load_ps(M[b1][1]),1);

m2 = _mm256_insertf128_ps(m2,_mm_load_ps(M[b1][2]),1);

m3 = _mm256_insertf128_ps(m3,_mm_load_ps(M[b1][3]),1);

__m256 a = _mm256_mul_ps(m0 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(0,0,0,0))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m1 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(1,1,1,1)))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m2 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(2,2,2,2)))) ;

a = _mm256_add_ps(a ,_mm256_mul_ps(m3 ,

_mm256_shuffle_ps(v,v,_MM_SHUFFLE(3,3,3,3)))) ;

_mm256_store_ps(R[i],a);

}

x y z w

x y z w

Verts

x y z w x y z w

...

M[b[i+0]]

M[b[i+1]]

Matrix Palette

...

...

M
M[b[i+1]] M[b[i+0]]

x y z w

x y z w

x y z w

v’=v*M

x' y' z' w' x' y' z' w'

x y z w

Output

x y z w

x y z w

b

b

Bone

b

b

b

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Performance tuning

Agenda:

• x86 Architecture

– Program Execution Flow

– AVX® SIMD

– Easy Effective code patterns

• Performance Tuning Workflow

– Hotspot profiling

– Events and vTune® performance guided analysis

• Walkthrough/Examples

Take the Guesswork out of Optimization!

You Are

Here

Intel® Microarchitecture

Codename SandyBridge

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Code profiling and performance tuning

• Goal: Make programs run faster

• For video games, it‟s low latency

• Finish drawing in a bounded amount of time

• Where do I start optimizing?

• Limited time, maximize effort

• Solution: Use code profiling tools for performance tuning

37

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

2 kinds of performance tuning

• Algorithmic

• Applies to all architectures

• Generally improves code elegance and conciseness

• Also includes the quality of parallel decompositions, CPU usage, and

other multithreading issues

• Hardware

• Architecture-specific (though commonalities exist)

• Tends to obfuscate code (e.g. matrix blocking)

• Requires architectural understanding

 Both are essential!

38

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Analysis and tuning workflow

39

Performance tuning is an iterative process

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel® VTune™ Amplifier XE

• Helps analyze code performance

• Multi-threaded and hardware bottlenecks

• Find hotspots, analyze thread performance

• Compare before and after performance

• Available for Windows and Linux

• Integrates with Microsoft Visual Studio

• Also standalone GUI for both Windows & Linux

40

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Types of analysis

41

Algorithm Analysis Types
using stack sampling and API

instrumentation (except Lightweight
Hotspot)

Advanced Analysis Types
Using hardware event based

sampling

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel VTune Amplifier XE
Algorithmic Analysis: Hotspots

Hottest Call Stack

Hottest Functions

Quickly identify what is important

42

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel VTune Amplifier XE
Algorithmic Analysis

Concurrency and Frame Analysis

43

Frames

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel VTune Amplifier XE
Algorithmic Analysis

Concurrency and Frame Analysis

44

Frames

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel VTune Amplifier XE
Algorithmic Analysis

Concurrency and Frame Analysis

45

Frames

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Intel VTune Amplifier XE

Algorithmic Analysis – Frame Analysis

46

Fast
Good
Slow

frames

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Hardware event-based sampling

• Performance Monitoring Unit (PMU) counters

+ Offer a unique and powerful view into the CPU

• reveal architectural bottlenecks in uninstrumented

code running at full speed

• hundreds of events offer insights into every part of

the microarchitecture

− Methodology to use event counters in a top-down optimization

methodology, but beyond the scope of this class

• At the level of functions and higher, raw events aren‟t that useful

• Who cares if I experienced 2,166,000,000 DTLB misses? What

matters is how much it cost me!

47

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Hardware event-based sampling

• VTune™ Amplifier XE helps make PMU-based performance

tuning easier

• Several predefined analysis types help you focus on specific

problems

• Even better, VTune™ Amplifier XE shows metrics over PMU

event counts. Instead of 2.17B DTLB misses, we can see

what proportion of the time the app was dealing with DTLB

overhead...

• What does that look like?

48

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Hardware event-based sampling -- Example

49

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Hardware event-based sampling -- Example

50

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

AVX Cloth Sample

Cloth Simulation Background

Distance Constraint Update (Key Hotspot)

Aligned Data and picked working-set sizes to fit cache

Ordering the constraints to avoid data dependency

Mapping to 8-float SIMD with SOA

AVX transpose to AOS vertex buffer

Maximizing Throughput and exploiting 8-wide SIMD in practice

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Demo of VTune Amplifier XE on AVX Cloth

52

Before optimization After optimization

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Tools help in tuning performance

• Not automatically.. yet!

• This is a Hard Problem: what does „run faster‟ mean? What

behavior is correct and what incorrect?

• They show where code is slow, and why it‟s slow

• Hotspots, the fundamental unit of performance tuning

• Performance tuning is an iterative process

• Phases of analysis, using tools like VTune Amplifier XE, alternate

with phases of contemplation and code editing

• In the end, developers must decide their goal

53

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Fast Code == More Stuff == More Fun

• Optimize code to harness modern CPU power

• Saturate execution ports with work every cycle

• Do big pieces of work – Consider an AVX build of your app

• do 8 at a time and fully utilize AVX SIMD

• SOA if possible (static or on-the-fly data transpose)

• Pair 4D SIMD patterns otherwise

• Sanity check the source code (and perhaps assembly) for obvious inefficiencies

• With timing or VTune Amplifier analysis, verify program flow is optimal

• Watch for cache misses, branch prediction misses, port underutilization

54

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Resources: Programming with AVX

For AVX support

• Intel 2nd Generation Core family, AMD‟s upcoming

CPU

• Windows 7 SP1

• Visual Studio 2010 SP1

• Intel® Composer XE (Intel Compiler 12.0)

55

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Resources

• AVX Cloth demo

• Intel VTune Amplifier XE Performance Profiler

56

http://software.intel.com/en-us/articles/avx-cloth/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Legal Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in
medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights that relate to the presented subject matter. The furnishing of documents
and other materials and information does not provide any license, express or implied, by estoppel or
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel may
make changes to specifications, product descriptions, and plans at any time, without notice. The Intel
processor and/or chipset products referenced in this document may contain design defects or errors
known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request. All dates provided are subject to change without notice.
All dates specified are target dates, are provided for planning purposes only and are subject to change.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2010, Intel Corporation. All rights reserved.

Software & Services Group, Developer Products Division
Copyright© 2011, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for
instruction sets that are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but do
not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, including some
that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel
compiler options, including the instruction sets and specific microprocessors they implicate, please refer to the “Intel
Compiler User and Reference Guides” under “Compiler Options." Many library routines that are part of Intel compiler
products are more highly optimized for Intel microprocessors than for other microprocessors. While the compilers and
libraries in Intel compiler products offer optimizations for both Intel and Intel-compatible microprocessors, depending on
the options you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel
Streaming SIMD Extensions 2 (Intel SSE2), Intel Streaming SIMD Extensions 3 (Intel SSE3), and Supplemental Streaming
SIMD Extensions 3 (Intel SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel
and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best
meet your requirements. We hope to win your business by striving to offer the best performance of any compiler or
library; please let us know if you find we do not.

Notice revision #20110228

Optimization Notice

