
Putting the Plane Together Midair

Andrew Woo
Gameplay Engineer, Riot Games

15 million+ registered users

500,000+ combined PCU NA & EU

2 week patch cycle

League of Legends

Great gameplay programming

embraces the unknown

Common programming wisdom

says you can optimize on

Time and Space

To find Fun you need to

optimize on Life

Designers need to do crazy stuff.

Flexible code allows you to say

“Yes!”

Everything should be made as

simple as possible,

but no simpler.

(Thanks, Albert Einstein!)

We want Moar!

Advanced Tutorial

More Intelligent AI

New Game Modes

The Old and the New

Pain Points

Hard to debug

Hard to optimize

Hard to use

Optimize on Iteration
Speed

FlexibilityLife

Implementation Details

Visual language based on Behavior Trees

“Compiler” and “Virtual Machine” in C++

Visual front-end tool in C#

Underlying data format is clear-text XML

Co-exists with our old scripting language!

The Secret Sauce

Behavior Trees

Design Patterns

Storing State

Event-Driven Trees

Scripting

Strengths

Complete and direct gameplay control

Current systems already implemented in lua

Weaknesses

Hard to debug and optimize

Requires a lot of engineering expertise from your Designers

Hierarchical FSMs

Strengths

Intuitive for Designers

Pretty good low-level control

Weaknesses

Difficult to scale and reuse

Hard to make goal-directed

Why Behavior Trees?

Takes the power and flexibility of scripting and

makes it a simple visual language for Designers.

Takes the intuitive and reactive power of

Hierarchical FSMs and makes it reusable and

goal-directed

Behavior Tree

Key Node Types

Sequence: short-circuit AND (&&)

Selector: short-circuit OR (||)

Decorator: FOR loops

Condition: game state checks

Action: gameplay interaction

Flexible code allows you to say

“Yes!”

Goals

User-defined nodes and Behavior Trees

[Composite]

Multiple AI Actors using the same Behavior Tree

definitions [Flyweight]

Need AI Actors to each be able to walk the same

tree and keep their own state [Visitor]

Composite

Flyweight

Visitor

Finding Fun means coding for

Change

Goals

Letting nodes and trees communicate with each

other

Allow nodes to be user-defined

Type safety

Property Maps

Map of “parameter name” and boost::any

Let the Summoner Script execute or create any

tree without caring about what nodes do

Allowed us to enforce type safety both in the

visual tool and the C++ code

Great gameplay programming

embraces the unknown

Goals

Allow the Designers to learn and become

experts in a single language

Have fast execution for both update-based AI

scripting and event-based level-scripting

Event-Driven Trees are just like

Update-Driven Trees except they

only tick once.

Event-Driven Trees

Finding Fun means coding for

Change

Optimize on Iteration
Speed

FlexibilityLife

awoo@riotgames.com

	Putting the Plane Together Midair
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	We want Moar!
	The Old and the New
	Pain Points
	Slide Number 12
	Implementation Details
	The Secret Sauce
	Slide Number 15
	Scripting
	Hierarchical FSMs
	Why Behavior Trees?
	Slide Number 19
	Key Node Types
	Slide Number 21
	Slide Number 22
	Goals
	Composite
	Flyweight
	Visitor
	Slide Number 27
	Slide Number 28
	Goals
	Property Maps
	Slide Number 31
	Slide Number 32
	Goals
	Event-Driven Trees
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

