
Carlos Gonzalez Ochoa
Graphics Programmer – Naughty Dog

Doug Holder
Fx Artist – Naughty Dog

Water Technology of Uncharted

1

Contributors

Eben Cook
Michal Iwanicki
Ryan Broner
Vincent Marxen
Jacob Minkoff

Matt Morgan
Jerome Durand
Peter Field
Junki Saita
Marshall Robin

2

Action and Adventure

Not a “water” game

3

Uncharted is an action adventure game. Game play is combat and exploration. Itʼs not about water gameplay

There are tons of environments: Jungle, temples, cities, caverns, ruins, etc
In each we generally add some water element. puddles, streams, rivers, pools, lakes, and lastly the ocean
Water has been a major design element and we have improved it through the series

4

well, not always...

4

5

Water in many forms

6

From small to large bodies of water

7

Interaction with the water. Clothes get wet

8

Slow and hard to
navigate

Fast moving

9

10
The game has a very particular art style and the water had to be able to match it

Water has to move
Has to look better

Previous work... lots of it

Crysis, Kameo, Resistance, Bioshock, Halo and
 many, many others
Perfect storm, Cast Away, Poseidon, Surf’s Up,...
Tech demos
Scientific visualization
SIGGRAPH, IEEE, I3D papers

11

We saw lots of reference work in games, films and other scientific papers. The work in Scientific visualization was key for the work in
flow

river level

12

Complex refraction/reflection model
Flow: Scroll uvs (per pixel/vertex) of normal map by a vector field
Refraction: depth based jitter and coloring
Foam movement using a threshold operation on a gradient field
Churn: further depth based coloring.Use foam texture to modulate water depth, blend again. Pseudo-volumetric effect
All parameters are artist controlled!

river level

12

Complex refraction/reflection model
Flow: Scroll uvs (per pixel/vertex) of normal map by a vector field
Refraction: depth based jitter and coloring
Foam movement using a threshold operation on a gradient field
Churn: further depth based coloring.Use foam texture to modulate water depth, blend again. Pseudo-volumetric effect
All parameters are artist controlled!

Reflection w/
jitter

Bumped
Normal

Geometric
Normal

Depth distance

Depth color
attenuation by
distance to bg

Wave
height

Foam modulated
by wave height

Churn color and
depth color mixed
by wave height

§ = Refraction w/ jitter

Shader

Flow

13
The water shading uses already used ideas:
Use a bump map to jitter the normal of the surface.
Use a fresnel term using the jittered normal to blend between a refraction and reflection contribution.

In addition, we use other ideas to modulate the coloring of each contribution
We add foam that get lit on top of the reflection and refraction. We can also choose to mix the foam w/ the refraction, this can create muck

We use churn to simulate a volumetric effect

Refraction. We color the refraction depending on the distance between the surface of the water and the background
 The depth coloring can be a linear or exponential function
 The depth coloring can be affected by churn. We take one channel of the foam texture to blend between the depth coloring and the "churn" coloring.
 As the foam moves (which it also gets modulated by the waves), the coloring changes with the waves and the foam scrolling

The reflection can also be added on top the refraction instead of just blended.
All fresnel coefficients, start-end are artist controlled

Water shader by layers

14

Reflection - no bump

15

Reflection - with bump

16

Refraction

17

The reflection and refraction are blended using a fresnel
coefficient

Reflection - depth based color - no bump

18

Depth based function is used to blend a base color and the refraction color. Here no jittering is
applied.

Reflection - depth based color - with bump

19

The jitter factor is also modulated by the
depth

Soft shadows

20

Foam - modulated by wave’s amplitude

21

Foam and churn which add a texture above and below
The foam is also moving by the flow

Specular lighting

22

Final

23

Flow

Reflection w/
jitter

Bumped
Normal

Geometric
Normal

Depth distance

Depth color
attenuation by
distance to bg

Wave
height

Foam modulated
by wave height

Churn color and
depth color mixed
by wave height

§ = Refraction w/ jitter

24

We will look into how we moved the normal maps, this is the key of the water
shader

Flow shader
Vector field used to advect mesh properties
UV scrolling
Displacement

Shader based on scientific visualization work:
N. Max, B. Becker, “Flow Visualization using Moving Textures”, 96
F. Neyret. “Advected Textures”, 03

25

The flow shader was originally created by C. Gonzalez-Ochoa at ND for Uncharted
1.

0

1

0 1 2 3 4 5

Blend value

time

Texture 1
Texture 2

0

1

UV distance movement

time

26

Here is an example of flow using a vertex shader to compute the blend values for triangles (instead of pixels).

Remember, to scroll in the right direction the uvs should move OPPOSITE to the intended direction

0

1

0 1 2 3 4 5

Blend value

time

Texture 1
Texture 2

0

1

UV distance movement

time

26

Here is an example of flow using a vertex shader to compute the blend values for triangles (instead of pixels).

Remember, to scroll in the right direction the uvs should move OPPOSITE to the intended direction

27

We can use several other effects besides using the basic flow. Here we use a second fetch (feedback) to give extra
fluidity

Blend between two “flow” textures, one offset in
phase by τ/2

Ways to improve it:
Offset the placement after each cycle
Offset uv starting position to minimize distortion
Offset in space the phase
Use texture feedback (ping back) to get extra motion

28

There are many ways to improve flow.
Since the texture moves in cycles of Tau seconds, the improvements come from where the texture starts moving from (1 and 2 above)
The offset in space, is when using flow on a vertex shader and we want each pixel to blend at a different rate.
Be careful because one does not want to big discontinuities across the whole texture.

Flow shader
 half3 result, tx1, tx2;
 half s = .1; // small value

 float timeInt = (g_time) / (interval * 2);
 float2 fTime = frac(float2(timeInt, timeInt + .5));
 float2 flowUV1 = uv - (flowDir/2) + fTime.x * flowDir.xy;
 float2 flowUV2 = uv - (flowDir/2) + fTime.y * flowDir.xy;

 tx1 = FetchTexture(flowUV1);
 tx2 = FetchTexture(flowUV2);
 tx1 = FetchTexture(flowUV1 + s*tx1.xy); //[optional] Fetch 2nd
 tx2 = FetchTexture(flowUV2 + s*tx2.xy); //time for extra motion
 result = lerp(tx1,tx2, abs((2*frac(timeInt))-1);

29
This is the most basic flow shader.

There are many ways to improve it. By adding an offset to where the texture starts:

float2 offset1 = float2(floor(timeInt) .1);
float2 offset2 = float2 (floor(timeInt + .5) * .1 + .5);

flowUV2 = uv + offset1 - (flowDir/2) + fTime.x * flowDir,xy;
flowUV2 = uv + offset2 - (flowDir/2) + fTime.y * flowDir.xy;

Offset the uv starting position to minimize distortion. One wants the uv coordinates to have less distortion (that mean their displacement is 0) when the blend is at its maximum.

float timeInt = (g_time) / (interval * 2);
 float2 fTime = frac(float2(timeInt, timeInt + .5));
 float2 flowUV1 = uv - (flowDir/2) + fTime.x * flowDir.xy + .5 * flowDir.xy;
 float2 flowUV2 = uv - (flowDir/2) + fTime.y * flowDir.xy + .5 * flowDir.xy;

You can spread around where the phase changes, this is easy to do if the flow is done on a pixel shader (not on triangles)
float timeInt = (g_time) / (interval * 2);
float offsetPhase = phaseScale * FetchPhaseTexture(u,v); // texture goes from 0..1
 float2 fTime = frac(offsetPhase + float2(timeInt, timeInt + .5));

You can think on many other ways to use flow.

Scientific visualization results can be handy to do cool shader effects.

Easy to author
ND Maya tool
 Dir, velocity
 Foam, phase

Flow gives players
a direction to where
to go.

Start

End

sunken ruins level
30

This is the Maya tool used in all the Uncharted games.
The tool uses splines to define the direction and color maps to control the magnitude of the velocities.
Also,we can generate foam maps, and phase (for displacement).
Later we will talk more about the basic flow displacement

file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga
file://localhost/Users/carlos/Documents/Conferences/GDC%202012/images/tools/flow-tool-ruins-02.tga

sunken ruins level
31

Each vertex moves on
a circular pattern at a
different phase φ

Flow based displacement

x1’=x1+cos(αt + φ1)
y1’=y1 +sin(αt +φ1)

Global axis

Flow
directionx2’=x2+cos(αt + φ2)

y2’=y2 +sin(αt +φ2)

32

Flow can also be used for displacement.
In the case of U1, I encoded flow into the vertices. And we could do displacement in the SPU's.
In addition to a vector field, we encoded a a phase field over the mesh.
Every vertex moves in a anisotropic scaled circle.

So if we set the phase field nicely spaced not only in the direction of flow, but also perpendicular to it, we can get some interesting waves.
Of course these waves will not be as dramatic nor complex as the one in U3

Each vertex moves on
a circular pattern at a
different phase φ

Flow based displacement

x1’=x1+cos(αt + φ1)
y1’=y1 +sin(αt +φ1)

Flow
direction

Local axis

x2’=x2+cos(αt + φ2)
y2’=y2 +sin(αt +φ2)

32

Flow can also be used for displacement.
In the case of U1, I encoded flow into the vertices. And we could do displacement in the SPU's.
In addition to a vector field, we encoded a a phase field over the mesh.
Every vertex moves in a anisotropic scaled circle.

So if we set the phase field nicely spaced not only in the direction of flow, but also perpendicular to it, we can get some interesting waves.
Of course these waves will not be as dramatic nor complex as the one in U3

Each vertex moves on
a circular pattern at a
different phase φ

Flow based displacement

x1’=x1+cos(αt + φ1)
y1’=y1 +sin(αt +φ1)

Rotated
Local axis

Circular
Motionx2’=x2+cos(αt + φ2)

y2’=y2 +sin(αt +φ2)

32

Flow can also be used for displacement.
In the case of U1, I encoded flow into the vertices. And we could do displacement in the SPU's.
In addition to a vector field, we encoded a a phase field over the mesh.
Every vertex moves in a anisotropic scaled circle.

So if we set the phase field nicely spaced not only in the direction of flow, but also perpendicular to it, we can get some interesting waves.
Of course these waves will not be as dramatic nor complex as the one in U3

33

Flow

Useful for lots of other effects

Clouds, sand, snow, psychedelic effects...

See Keith Guerrette’s GDC 2012 talk
“The Tricks Up Our Sleves....”

34
We have used flow for sand moving on top of the dunes, the psychedelic effects in U3, cloud movement.
FX artists even use it for fire and trails

Water good enough for

What is next?

35

 early 2009 idea

“What if we have a ship in a storm...
and we turn it 180 degrees and sink it?

Wouldn’t that be awesome?”

 Jacob Minkof
 Lead Designer

36

Simple displacement mesh with a shader will not be enough for this idea

The cruise ship

37
Nor for this rough ocean

Ship graveyard

38
This one was crazy. There is so much detail that we needed to capture on the ocean. All the action on the ship graveyard would be close to the water.
We would smoothly transition from a calm ocean to a stormier and stormier ocean

*

39

* Thanks, we truly appreciate the challenge

*

39

Ocean
Render challenges
Open ocean, big waves (100 meters+)

Waves drive boats and barges
Animation loops were considered but not used

Swimming
40

Initially designers thought about using a can animation for the cruise boat
(silly designers, we can do better)
One problem was that once we are on the boat is hard to read the scale of the waves.
We are high on the boat and the camera attached to the player smooths out the waves.To compensate we have to exaggerated the amplitude of the waves to read as a storm.

Wave System
Procedural
Parametric
Deterministic

LOD

Ocean

41

Procedural

 Simulation = too expensive
 Perlin like noise = not that good visually

42

Procedural geometry and animation are good if we can find a good model.
Simulation would be too expensive to compute (even in SPUs) and hard to control by designers
Perlin noise results are not that great visually, tend to look very artificial
The FFT technique is great, but the parameters are hard to control and tweak by artists. Also is hard to get right.

Parametric
Evaluate at any point in R2 domain

 F(<u,v>, t, parameters) → <x,y,z>

Vector displacement, not a heightfield

43

Since we would have an ocean any point should be able to be computed.
The ocean was not restricted to a fixed grid and had to be compatible with other parametric equations.
This way we could do a compositing wave system

It’s important to note we are generating a vector displacement.
One would need a super fine mesh to have by sharp wave peaks with a heightfield.
Its easier with a vector displacement, one does not need a fine mesh for it.

Deterministic
Evaluate at any point in R2 space and time

 F(<u,v>, t, parameters) → <x,y,z>

Needed for cutscenes and multiplayer

44

For FMA scenes we needed to be able to rewind the ocean, so we cannot "advance" the state. So our system is stateless
Our system is completely stateless

Waves
Gerstner waves

- Simple but not enough high frequency detail

- Can only use few [big swells] before it’s too expensive



45

So all these requirements force us to certain techniques to use to evaluate waves.
So the easiest ones are the Gerstner waves. These are the workhorse of waves, any one uses them. However, they get expensive to evaluate to get a good number (20+) of them.

The FFT technique is the most realistic one. But is hard to get the right parameters, the artists have to spend lot of time searching for the “correct” values
We also found some tiling artifacts when one has small grid resolutions (64 side)

Waves
Gerstner waves

- Simple but not enough high frequency detail

- Can only use few [big swells] before it’s too expensive

FFT Waves - Tessendorf “Simulating Ocean Water”, 1999

+ Realistic, more detail

- Spectrum of frequencies - hard for artists to control
½ Tiling visual artifacts at low resolution grids

46
So all these requirements force us to certain techniques to use to evaluate waves.
So the easiest is Gerstner waves. The work horse of waves, any one uses them. However, they get expensive to evaluate to get a good number (20+) of them.
FFT again the most realistic ones. But as we said, hard to get right parameters. We found some tiling artifacts

Wave Particles
Yuksel, House, Keyser, SIGGRAPH 2007

Waves from point sources

Ours -> Don’t use point sources
Instead, in a toroidal domain place a random distribution of
particles to approximate the chaotic motion of open water


Random positions and velocities within a some speed bounds

→ Yields a tileable vector displacement field

http://www.cemyuksel.com/research/waveparticles/

47

This is the main idea to get our open ocean waves. It's easy to implement and to optimize.
See the Wave Particle paper for more details

β=0
β=.5
β=1

48

49

Wave Particles
+ Intuitive for artists to control

+ No tiling artifacts

+ Fast! Good for SPU vectorization
 [Optimization by Michal Iwanicki]

+ Deterministic in time. No need to move particles
 New position is derived from initial position,
 velocity and time

50

Composition of displacement grids at different scales ≈ octaves

51

Composition of displacement grids at different scales ≈ octaves
Can also be translated over time

Fade out by distance

52

Wave field

Gerstner waves (x4)

Wave particles
 (1 grid used x4)

=

+

53

At this point , the displacement field, evaluates 4 gerstner waves plus 4 wave-particle grids per
vertex

Flow grid: Encode flow, foam, amplitude multipliers in a grid

Base grid with flow curves

54

Flow grid: Encode flow, foam, amplitude multipliers in a grid

Flow vectors (direction and magnitude)

Flow grid: Encode flow, foam, amplitude multipliers in a grid

55

Flow grid: Encode flow, foam, amplitude multipliers in a grid

Wave amplitude

56

Wave’s amplitude

modulates foam

57

The foam modulation is outputed as a vertex color when we generate the final
mesh

58

59

Hey, we need this!

59

Gerstner waves (x4)

Wave particles (x4)

Big wave

Addition of simpler waves

=

+

+

60

In addition to the previous waves, we add a custom artist wave.

This type of wave will be used for the crash wave scene and to also keep the player from swimming away from the game play area

Big wave - Orient a square region Π over domain

u
v

<x,y> → <u,v>
Π

61

The wave is quite easier to construct. We need to reparametrize a rectangular domain over the plane.
The rectangle can be though as the base of a NURBS patch.
We can use the (u,v)->(0..1, -1..1) domain or the normalized one(0..1, 0..1), depending where is the center.
The u is used to parameterize a Bspline curve. The v we extrude the curve and tapper it.

The subdomain can be scaled and translate over time to animate the wave

Big wave - Create a Bspline curve oriented in the u direction

u
v

<x,y> → <u,v>

62

u
v

Big wave - Extrude the Bspline along v direction
63

u
v

y = ½ (cos(2πv-π)+1) · bspline(u)

Big wave - Taper on the sides
64

u
v

y = cos(π(2v - ½)) · bspline(u,t)

Big wave - Translate, scale region or curve over time
65

66

67

68

This is a partial formula of the whole wave system.
The bspline is a uniform, non-rational bspline. We could have used a Bezier but it requires more code.

The grid(u,v) function returns a scalar value given the u,v, coordinates. In this case, we have a multiplier for the wave scale

LOD

Many ways to create the water mesh

Screen projected grid → aliasing artifacts
Quasi projected grid → issues handling large
 displacements

69

Irregular Geometry Clipmaps

Based on:
 Losasso, Hoppe, “Geometry Clipmaps: Terrain
 Rendering Using Nested Regular Grids”
 SIGGRAPH 04

Modified for water rendering

70

The irregular geometry clipmaps have different way to partition the rings and the
blocks.

Irregular Geometry Clipmaps

Different splits to fix T-joints across ring levels
Dynamic blending between levels
Patches lead to better SPU utilization

71

72

As the camera moves, the rings will move quads from one side to the other.

Any point in a ring will always be sampled from the same place. This way, we don’t have any jittering and aliasing problems

Ring 1

Ring 2

Ring 3

Ring 3

...

73

74

75

76

77

78

79

80

81

Single
Ring

82

Normal
Patches

Fixer
Patches

83

84

This is the general patch divisions. On a ring there are 16 patches.
The lowest level ring would have an additional patch in the center

Splits will always
avoid T-joints with next
ring

Fixer patches give
“space” between this
and previous ring

85

T-corner fixes

Skipped
indices

Border triangulation fixing

Ring 1

Ring 2

86

Border blending

Vertex blending
area

Ring 1

Ring 2

87

T-joint fixes Vertex blending

88

Culling

Cull out patches that are
 outside frustum

Frustum-bbox test

89

2 pass culling. First we generate bounding boxes with some extra slack from 4 corners and perform a quick intersection test.

After we generate the displaced surface, we have a tighter bbox, and can perform another intersection test.

90

91

Video of the ocean clipmap rendering. In wireframe is easier to see how the clipmap levels are
rendered

Into the lion’s den

92

Although we are inside the ballroom, we can see out the ocean. Furthermore the waves are moving the boat, so the chandeliers are being driven indirectly by the waves.

To heighten the drama we are closer to the water level

93

Use portals to show patches seen from windows
For waves intersecting ballroom:
Use box aligned with ballroom to clamp down vertices

Culling

94

Another problem is that the ballroom is too low to the water line and we had clipping issues with big waves.
The solution is simple, test the points to a box, oriented to the ballroom, and push the vertices down

So something happens to the ship...

95

There is a sequence in U3, the Drakes goes from the top of the cruise-ship to the cargo hold.
 At the cargo hold, Drake does what he does best: destroy everything

96

The ocean system is used in all the water in this sequence, we just change the shader and
parameters.

96

The ocean system is used in all the water in this sequence, we just change the shader and
parameters.

97

97

and we come back to the ballroom

98

Ballroom
●Intersection with water

99

100

We could only render one ocean at a time, so we constantly had to change between all the different water elements in the cruiseship.

We would switch parameters and shader of the water. At some points between 2 frames.

The skylight section (the ballroom tilted 90 degrees) is technically the most difficult section of the whole game.
We needed to render water outside, and could be seen from above and below. Also there would be a flooding stage.

We had to limit the movement of the boat to one plane, so we could clip the water using a simple plane.
At some point we thought of using a curved glass, but we ran out of time.

Above and below water line
Ocean waves lapping on the windows

Flood

100

We could only render one ocean at a time, so we constantly had to change between all the different water elements in the cruiseship.

We would switch parameters and shader of the water. At some points between 2 frames.

The skylight section (the ballroom tilted 90 degrees) is technically the most difficult section of the whole game.
We needed to render water outside, and could be seen from above and below. Also there would be a flooding stage.

We had to limit the movement of the boat to one plane, so we could clip the water using a simple plane.
At some point we thought of using a curved glass, but we ran out of time.

See Eben Cooks’ GDC 2012 talk
“Creating the Flood Effects in U3”

Above and below water line
Ocean waves lapping on the windows

Flood

100

We could only render one ocean at a time, so we constantly had to change between all the different water elements in the cruiseship.

We would switch parameters and shader of the water. At some points between 2 frames.

The skylight section (the ballroom tilted 90 degrees) is technically the most difficult section of the whole game.
We needed to render water outside, and could be seen from above and below. Also there would be a flooding stage.

We had to limit the movement of the boat to one plane, so we could clip the water using a simple plane.
At some point we thought of using a curved glass, but we ran out of time.

Skylight scene

skylight [top down view]
101

Skylight scene

Cull out patches that are
 outside frustum
Frustum-bbox test

skylight [top down view]
101

Skylight scene

Cull out patches that are
 outside frustum
Frustum-bbox test

skylight [top down view]

Cull out patches outside skylight
Plane-bbox test

101

Skylight scene

Cull out patches that are
 outside frustum
Frustum-bbox test

These ones still remain

skylight [top down view]

Cull out patches outside skylight
Plane-bbox test

101

Skylight scene

 For rendering use shader discard operation to do plane
 clipping
 For evaluation clamp down points inside ballroom bbox

skylight

102

The culling using the shader was simple a plane culling

Skylight scene (90 degree cruise-ship)

 Fake underwater fog with a polygon “curtain” driven by the
water movement (Eben’s Cook hack)

103

Faking the underwater fog was more complicated.
Eben Cook did an awesome job figuring out a way to realize the effect without multipasses.
He used a polygon skirt that is driven by the waves and it covers the back of the glass. The skirt shader simulates the fog effect of water.

104

104

105

file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga

105

file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga
file://localhost/Volumes/KINGSTON/U3/skylight-skirt-composite.tga

106

Floating objects
Sample points and best fit a plane for orientation
On intersection areas, multiply down amplitude

107

Depending on object, we can sample some points and best fit a plane to orient the
object

Attaching objects
Sample points and best fit a plane for orientation
On intersection areas, multiply down amplitude

Amplitude
 multiplier

1

0
108

Sample points along length of the boat
Don’t sample all waves (filter out high frequencies)
Use a spring to allow movement of bow

point set
average & normal

Average of points
and normals

Cruise ship

109

Player swimming
Cameras
Floating objects
Collision probes

Point queries

p

?

110

Sampling a vector displacement field is not as trivial as a heightfield.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position
111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>

1

p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position
111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>

1

p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

1

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>

1

p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

1

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>

1

p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

1

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>

1

p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

12

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

2

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

22

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

22

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

22

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

2

22 3

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

3

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

33

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

33

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

33

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

3

334

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

4

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

4

4

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

4

4

4

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

p

Point queries
Cameras, player query:
given point p <u,v> find
water position r <u, y, v>

Ryan Broner’s search method
Similar to the Secant method,
but use displacement in a
R2→R3 map

query <u,v>p

result <u,v>+<x,y,z>q

projection <u,v>+<0,y,0>s

?

r final result position

4

4

4

r

111

We use a search method to the wave field instead of building a mesh and then do some form of ray
casting.

112

Mesh computation
For each ring, run an SPU job to
handle patches (i % 3):

J1: (0,3,6,9,12,15)
J2: (1,4,7,10,13,[16])
J3: (2,5,8,11,14)

Minimize ring level computation
Double buffer mesh output

0 1 2

3 4

5 76

8 9 10

11 12

13 14 15

16

113

The job distribution per SPU is in round-robin order.

A job consists on a set of patches (indexed using a modulus 3) on a particular ring.

PPU

SPU
job 1

Main memory
Buffer for meshes allocated per level

SPU
job 2

SPU
job n

…

Wave evaluation

Mesh indices and fixes

Mesh buffer (double buffered)

114

Since each job will create a perfectly seemed mesh, there is no need to stitch back the mesh.

The final mesh of the ocean, consists on multiple meshes

SPUs

PPU

kick jobs

Wave particles water point
surface queries Clipmap

Clipmap

Clipmap

Rain

Rain

Rain

water ray
queries

… …

Camera
calculation wait jobs renderbarrier

115

We only have to be careful with time. The clipmaps need the wave particles at a particular time.

We only need a single wave-particles job. This job generates a displacement grid.

To synchronize the jobs we put a barrier to wait for the wave-particles job to have finished generating its mesh.

Performance
Ocean
 0.9 ms wave particles
 0.1 ms water query (point and ray)
 8.0 ms tessellation + wave displacement
 5 SPUs
 average 7 rings = 21 jobs
~2.7 ms rendering
 average 50+ visible patches
1 Mb double buffer memory

116

117

is Hiring!
jobs@naughtydog.com

Now, go and make some water

Questions?

cgonzoo@gmail.com

Now, go and make some water

Questions?

cgonzoo@gmail.com

118

mailto:jobs@naughtydog.com
mailto:jobs@naughtydog.com
mailto:jobs@naughtydog.com

119

This is a shot of the first pond we generated for U1. This was out test bed for flow, foam and interaction of Drake’s
clothes

