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WARNING 

• This talk is MATH HEAVY 

• We assume you understand the basics of: 
– Linear Algebra, Calculus, 3D Mathematics 

– Spherical Harmonic Lighting, Visibility, BRDF, Cosine Term 

– Monte Carlo Integration, Unbiased Spherical Sampling 

– Precomputed Radiance Transfer, Rendering Equation 

 

• This is bleeding edge research (like new results last night) 

• There are still a lot of unanswered questions 



Some Definitions 
• 𝕊2 is the unit sphere in ℝ3 

• 𝜉 is a point on the sphere 
 

𝜉 = 𝜃, 𝜑  where 

𝜃 ∈ 0,2𝜋  

φ ∈ 0, 𝜋  

 
𝜉 = 𝑥, 𝑦, 𝑧  where 

         𝑥2 + 𝑦2 + 𝑧2 = 1 
 

• Right-handed coordinate system, 
+ z is up 

 



Spherical Harmonics 

• The Real SH functions are a family of orthonormal basis 
function on the sphere. 



Spherical Harmonics 

• They are defined on the sphere as a signed function of every 
direction 

𝑦𝑙
𝑚 𝜃, 𝜑 =  

2𝐾𝑙
𝑚 cos 𝑚𝜑 𝑃𝑙

𝑚 cos 𝜃 ,        𝑚 > 0

2𝐾𝑙
𝑚 sin −𝑚𝜑 𝑃𝑙

−𝑚 cos 𝜃 , 𝑚 < 0

𝐾𝑙
0𝑃𝑙

0 cos 𝜃 ,                                  𝑚 = 0

 

 

• The functions are orthogonal to each other 

 𝑦𝑖 𝜉 𝑦𝑗 𝜉 ⅆ𝜉 = 𝛿𝑖𝑗 =  
1, 𝑖 = 𝑗
0,  i ≠ 𝑗

 

𝜉∈𝕊2

 



SH Deficiencies 

• SH produces signed values yet all 
visibility functions, BRDFs and light 
probes are strictly positive. 

 

• SH projections are global and 
smooth, visibility functions are local 
and sharp. 

 

• SH reproduces a signal at the limit. 
There is no guarantee the result is 
close to the original at low orders. 
Even at high orders it  “rings” esp 
when restricted to the hemisphere. 



Haar Wavelets 

• Haar wavelets are spatially 
compact and produce a lot of 
zero coefficients. 

 

• Generating 6 times the 
coefficients, papers rely on 
compression and highly 
conditional code. 

 

• Projecting cube faces onto the 
sphere introduces distortions, 
and seams for filtering and 
rotation. 

 

 



Radial Basis Functions 

• Radial Basis Functions are also 
used, usually sums of Gaussian 
lobes. 

 

• Need to solve two variables – 
direction and spread. Leads to 
conditional code that is not GPU 
friendly. 

 

• Zonal Harmonics are another 
form of steerable RBF built out of 
orthogonal parts. 



• Haar and SH are two ends of a continuum – one smooth and global, 
the other highly local and unsmooth. This is Spatial vs. Spectral 
compactness. 
 
 
 
 
 
 
 
 

Q: What lives in the middle ground? 

Smoothness vs. Localization 



Spatial vs. Spectral 

• It turns out, the Spatial vs. Spectral problem is exactly 
Heisenberg’s Uncertainty Principle. 

• You cannot have both spatial compactness and spectral 
compactness at the same time – e.g. The Fourier transform of 
a delta function is infinitely spread out spectrally. 

 

 

• But… thanks to a theorem by David Slepian called the 
Spherical Concentration Problem you can get pretty close. 



Fundamental Questions 

 

1. Where do these Orthonormal Basis Functions come from? 
 

2. How can we loosen the rules so we can define better 
functions for our own use cases? 
 

3. What are the key properties we need to retain for our 
functions to be useful? 



What You Need To Know 

• We are going to introduce Frame Theory and Spherical 
Quadrature, just enough to understand two key concepts: 

 

  Parseval Tight Frames 
  

  Spherical t-Designs 



Back to Fundamentals 

• We choose a vector space, like ℝ𝑛 or ℂ𝑛 
 

𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛  
 
where 𝐼 = 1,… , 𝑛  is an index set, we say the space has a dimension 𝑛 

 

• Using the rules of Arithmetic we can add and subtract vectors, or multiply 
and rescale them using a Scalar value: 
 

𝑥 + 𝑦 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … 𝑥𝑛 + 𝑦𝑛  

 
3𝑥 =  3𝑥1, 3𝑥2, … 3𝑥𝑛  

 

 



Back to Fundamentals 

• When we add an Inner Product and a Norm things get interesting: 

𝑥, 𝑦 = 𝑥𝑖
∗𝑦𝑖

𝑖∈𝐼

  

 

𝑥 = 𝑥, 𝑥  
 

• Now we can measure angles, perpendicularity, sizes, distance and 
similarity: 

𝑥, 𝑦 = 0 ⇒ 𝑥 ⊥ 𝑦 
 

• All of Geometry comes from these simple definitions 



Hilbert Spaces 

• A Hilbert space ℋ is a vector space with a finite energy 
 

 𝑒𝑖 , 𝑒𝑖 < ∞

𝑖∈ℋ

 

 

• These finite square summable signals termed 𝐿2 after Lebesgue 

• 𝐿2 is the mathematical world of data we see in the real world 

– Photographs 

– Audio streams 

– Motion Capture or GPS data 



Hilbert Spaces 

• The field ℂ has the inner product 𝑥𝑦  
 

• The field ℝn has the dot product defined  𝑥𝑖𝑦𝑖
𝑛
𝑖=1  

 

• The infinite dimensional space of finite sequences ℓ2 ℕ  has the 
inner product  𝑥𝑖𝑦 𝑖

∞
𝑖=1  

 

• The space of functions on the interval 𝑎, 𝑏  called 𝐿2 𝑎, 𝑏  has the 
standard inner product: 

𝑓, 𝑔 =  𝑓 𝑥 𝑔 𝑥
𝑏

𝑎

ⅆ𝑥 



Orthonormal Basis 

• An orthonormal basis Φ for Hilbert space ℋ is a set of vectors: 
Φ = 𝑒𝑖 𝑖∈ℤ 

 
where each pair of vectors are mutually orthogonal: 

 
𝑒𝑗 , 𝑒𝑘 = 𝛿𝑗,𝑘 

 
span Φ = ℋ 

 

– A span(𝑥) is the set of all finite linear combinations of the elements of 𝑥 



Orthonormal Bases 

• For example 

– the family 1

2𝜋
𝑒𝑖𝑛𝑥 

𝑛∈ℤ
 is an orthonormal basis for 𝐿2 −𝜋, 𝜋  called 

the standard Fourier basis from which we get the Fourier transform. 

x

3.142 3.142

1.571

1.571



Orthonormal Bases 

• For example 

– The family of polynomials 1, 𝑥, 𝑥2 − 1

3
, 𝑥3 − 3

5
𝑥,…  are the Legendre 

Polynomials, and form an orthonormal basis on the interval 𝐿2 −1,1  

 

x

1 1

1

1



Orthonormal Bases 

• For example 

– The family 𝑒𝑛 𝑛=1
∞  is an orthonormal basis on ℓ2 ℕ  where 

 

𝑒1 = 1,0,0,0,0,0,0, …  

𝑒2 = 0,1,0,0,0,0,0, …  

𝑒3 = 0,0,1,0,0,0,0, …  

 

– ℓ2 ℕ  is the infinite dimensional space of finite, time-related signals 

like audio, motion capture joints or accelerometer data. 

 



Orthonormal Basis Characteristics 

• Projection: Given a signal or function 𝑓 ∈ ℋ 
 

𝑐𝑖 = 𝑒𝑖 , 𝑓  

 

• If 𝑒𝑖 is a vector, this projection is a dot product. 

If 𝑒𝑖 is a function in 1D this is an integral  𝑒𝑖 𝑥 𝑓 𝑥 ⅆ𝑥
𝑏

𝑎
 

If 𝑒𝑖 is a function on the sphere, this integral is over the sphere 𝕊 

  𝑒𝑖 𝜃, 𝜑 𝑓 𝜃, 𝜑

𝜋

𝜃=0

sin𝜑 ⅆ𝜃 ⅆ𝜑

2𝜋

𝜑=0

 

 



Orthonormal Basis Characteristics 

• Perfect reconstruction: 
 

𝑓 = 𝑒𝑖 , 𝑓 𝑒𝑖        for all 𝑓 ∈ ℋ

𝑖∈𝐼

 

 

• This says we can project then exactly reconstruct our signal 
from just it’s coefficients 



Orthonormal Basis Characteristics 

• Parseval’s Identity: 
 

𝑓 2 = 𝑒𝑖 , 𝑓
2        for all 𝑓 ∈ ℋ

𝑖∈𝐼

 

 

• Sometimes called norm preservation, this says that the total 
energy in the function is the same as the magnitude of the 
coefficients. 
– This is a key property for a lot of algorithms. Working on coefficients is 

a lot quicker than working on functions. 

 



ONB Characteristics 

• Successive Approximation: 
 

𝑥 𝑘+1 =𝑥 𝑘 + 𝑒𝑘+1, 𝑥 𝑒𝑘+1 

 

• This is a roundabout way of saying that projecting to a subset 
of indexes is the best approximation in a least squares sense. 



General Bases 

• We use Orthonormal Bases all the time 

• Every rotation matrix in 3D is an Orthonormal Basis 



General Bases 

• What if you chose vectors that are not orthogonal? 

Φ = 𝑒1, 𝑒2  
 

𝑒1 =
1
0

 

 

𝑒2 =
2
2

2
2

 



General Base 

• We can still represent points, but we need a “helper” basis to 
get us there. 

Φ = 𝑒 1, 𝑒 2  
 

𝑒 1 =
1
−1

 

 

𝑒 2 =
0
2

 



• We can now project the point 𝑓 =
1
1

 

𝑓′ = 𝑒 𝑖 , 𝑓 𝑒𝑖

2

𝑖=1

 

 
= 𝑒 1, 𝑓 𝑒1 + 𝑒 2, 𝑓 𝑒2 

    = 1 ∙ 1 + −1 ∙ 1 𝑒1 + 0 ∙ 1 + 2 ∙ 1 𝑒2 

    = 0 ∙ 𝑒1 + 2 ∙ 𝑒2 

 

   =  
0

2
 

General Bases 



Biorthogonal Bases 

• This second “helper” matrix is called the dual basis Φ  

 
𝑒1, 𝑒 1 = 1 ∙ 1 + 0 ∙ −1 = 1 

𝑒2, 𝑒 2 = 2
2
∙ 0 + 2

2
∙ 2 = 1 

𝑒𝑗 , 𝑒 𝑘 = 𝛿𝑗−𝑘   𝑤ℎ𝑒𝑟𝑒 𝛿 = 

 

• Biorthogonal bases are pairwise orthogonal and commute. 

𝑓 = 𝑒 𝑖 , 𝑓 𝑒𝑖 =

𝑖∈𝐼

 𝑒𝑖 , 𝑓 𝑒 𝑖
𝑖∈𝐼

 



Matrix Notation 

• Now we switch to a matrix 
notation. 

 

• Every basis in ℋ can be written 
as a matrix with basis vectors as 
columns 

 

 

• Points are now column vectors. 
 

 

Φ = 𝑒1, 𝑒2, 𝑒3, …  
 

=

𝑒1𝑥 𝑒1𝑦
𝑒2𝑥 𝑒2𝑦
⋮ ⋮

 

 

𝑝 =
𝑥
𝑦  



Matrix Notation 
• Our projection and reconstruction now turn into operators 

 

𝑝 = Φ 𝑓 
 

𝑓 = Φ∗𝑝 
(where 𝑀∗ is the transpose) 

 
• We can now show that orthonormal bases are self dual: 

 

Φ = Φ 
Φ Φ∗ = I 



Breaking the Rules 

• What happens if we add another vector to the basis? 

 

 

 

 

 

 

• Now we have an overcomplete system, and coordinates are 
now linearly dependent 

Φ = 𝑒1, 𝑒2, 𝑒3  
 

=
 1 0
 0 1
 1 −1

 

Φ = 𝑒 1, 𝑒 2, 𝑒 3  
 

=
2 0
−1 1
−1 0

 



Breaking the Rules 

Φ = 𝑒𝑖 𝑖∈𝐼 Φ = 𝑒 𝑖 𝑖∈𝐼 



Breaking the Rules 

• We can still project a point and reconstruct it 

𝑓 = Φ∗𝑝 

     =
0 1 −1
1 0 1

2
0
−1

 

 

     =
1
1

 

𝑝 = Φ 𝑓 
 

     =
2 0
−1 1
−1 0

1
1

 

 

     =
2
0
−1

 



General Biorthogonal Bases 

• Biorthogonal bases demonstrate Perfect Reconstruction but 
we lose Norm Preservation and Successive Approximation 

 

𝑓 =
1
1
        𝑓 = 12 + 12 = 2 

 

𝑓′ = 
2
0
−1

       𝑓′ = 22 + 02 + −1 2 = 5 



Frames 

• This redundant set of vectors  Φ = 𝑒𝑖 𝑖∈𝐼  is called a frame 
and the set Φ = 𝑒 𝑖 𝑖∈𝐼 is the dual frame 

 

• Just like biorthogonal bases the frame and it’s dual are 
interchangeable and reversible 
 

𝑓 = ΦΦ ∗𝑓 
    = Φ Φ∗𝑓 

 



Mercedes Benz Frame 

• Certain frames have properties that 
mimic Orthonormal bases. 

 

• The Mercedes Benz frame has unit 
length elements and produces a 
norm 3 2  times too large: 

 

 𝑒𝑖 , 𝑝
2 =

3

2

3

𝑖=1

𝑝 2 

 

• 3 2  is the redundancy in the 
system. 

Φ𝑀𝐵 =

0 1

− 3 2 −1/2

3 2 −1/2

 

 



Parseval Tight Frame 
• We can factor out this constant and 

we end up with a frame that obeys 
Parseval’s identity 
 

Φ𝑃𝑇𝐹 =
2
3
Φ𝑀𝐵 

 
• This is called a parseval tight frame, 

or PTF. 
 

• Parseval tight frames have all the 
same properties as orthonormal 
bases, except for successive 
approximation. 

Φ𝑃𝑇𝐹 =

0 2 3 

−1 2 −1/ 6

1 2 −1/ 6

 

 



PTF-Mercedes Benz is Self Dual 
• The PTF-MB basis is self dual and preserves the norm. 

 

Φ𝑃𝑇𝐹𝑓 =

0 2 3 

−1 2 −1/ 6

1 2 −1/ 6

1
1
=

0.8165
−1.1154
0.2989

= 𝑓′ 

 
 

Φ𝑃𝑇𝐹
∗ 𝑓′ =

0 −1/ 2
1

2

2

3
−

1

6
−

1

6

0.8165
−1.1154
0.2989

=
1
1

= 𝑓 

 
 

  𝑓 = 2            𝑓′ = 1.4142 
 
 



Parseval Tight Frame 

• PTFs have exact reconstruction like orthonormal bases 

• PTFs are self dual, so we do not need a dual frame to project 

 

𝑓 = 𝑒𝑖 , 𝑓 𝑒𝑖

𝑛

𝑖=1

 

 

 



Frame Bounds 

• A family of elements 𝑒𝑛 𝑛∈ℤ in a Hilbert space ℋ is a frame if 
there exists positive constants 𝐴 and 𝐵 such that: 
 

𝐴 𝑓 2 ≤  𝑒𝑛, 𝑓
2

𝑛∈ℤ

≤ 𝐵 𝑓 2  

 

• The two values 𝐴 and 𝐵 are called the frame bounds 

• Ensuring 𝐴 > 0 means that the whole space is spanned 

• Ensuring 𝐵 < ∞ means the space is finite 



Frame Bounds 

• We can categorize frames based on their construction 

 

 

 

 

 

 

• Any tight frame can be factored into a PTF 

 

𝑒𝑖 = 1 Unit Frame 

𝐴 = 𝐵 Tight Frame 

𝐴 = 𝐵 = 1 Parseval Tight Frame 



Gram Matrix 

• One way to check that a frame is 
a tight frame is to generate the 
Gram Matrix ΦΦ∗ 

 

𝑀𝑖𝑗 = 𝑒𝑖 , 𝑒𝑗  
 

• If the frame is Parseval Tight, it 
will have 1 in the leading diagonal 
and the frame bound A in the off-
diagonals 

 

 

Φ = 𝑒1, 𝑒2, 𝑒3, 𝑒4  
 

M = ΦΦ∗ =

1 𝑎 𝑎 𝑎
𝑎 1 𝑎 𝑎
𝑎
𝑎

𝑎
𝑎

1
𝑎

𝑎
1

 



Spherical Polynomials 

• A spherical polynomial is simply an 
expression in 𝑥, 𝑦, 𝑧  that is 
evaluated on the surface of the unit 
sphere. 

 

• Add the highest power on each axis 
to find the order of the polynomial, 
e.g. 
 

𝑓 𝑥, 𝑦, 𝑧 = 3𝑥2 + 𝑦𝑧 

 
is a 2 + 1 + 1 = 4th order spherical 
polynomial 

 

 



Integrating on the Sphere 

• We have three ways of integrating over a sphere 
 
1. Symbolic integration over 𝕊2 

  𝑒𝑖 𝜃, 𝜑 𝑓 𝜃, 𝜑

𝜋

𝜃=0

sin 𝜃 ⅆ𝜃 ⅆ𝜑

2𝜋

𝜑=0

 

 

2. Numerical integration using unbiased Monte Carlo 

𝐸 𝑓 ≈
4𝜋

𝑁
 𝑒𝑖 𝜉𝑛 𝑓 𝜉𝑛

𝑁

𝑛=1

 

 

 



Gaussian Quadrature 

• If you are integrating a fixed order polynomial over a closed 
range, Gaussian quadrature can find the integral using a small 
number of evaluations 

 

 

 

 

• Trapezium Rule is a quadrature for linear curves. 

• Simpson’s Rule is a quadrature for quadratic curves. 

Simpson’s rule graph 



Spherical Quadrature 
• Given a set of points and their 

weights, quadrature will quickly 
find you the integral 
 

 𝑓 𝑥 ⅆ𝑥 = 𝑤𝑗𝑓(𝑥𝑗)

𝑁

𝑗=1

1

−1

 

 
– To find the integral over [𝑎, 𝑏] 

we scale the range on 𝑥𝑗  
 

• This also applies to integration over 
the sphere, sometimes termed 
spherical cubature 



Spherical t-designs 

• A spherical t-design is a special 
quadrature on the sphere where 
each point has the same weight 
1
𝑁  

 

• There are designs in 3D for N 
points from 1 to 100, the full list 
of known low order designs is on 
the web. 

 

• A t-design can accurately 
integrate a spherical polynomial 
of order t and below. 



Minimum Order t-designs 

order 2 
verts 4 

order 3 
verts 6 

order 4 
verts 14 

order 5 
verts 20 

order 6 
verts 26 

order 7 
verts 24 



The Mission 

• We need to find a spherical basis that is 
 
– Is defined natively on the sphere 

– Retains the norm as a Parseval Tight Frame 

– Allows us to select the number of coefficients 

– Is spectrally and spatially concentrated 

– Is cheap to project 

– Is cheap to rotate 

– Exhibits rotational invariance 



Spherical Needlet 

• Thanks to Narcowitch et al, 2005 we have the Spherical 
Needlet, a type of third generation Wavelet 

 

𝑒𝑖 𝜉 = 𝜆𝑖 𝑏
ℓ

𝐵𝑗

𝑑

ℓ=0

 𝑌 ℓ𝑚 𝜉 𝑌ℓ𝑚 𝜉𝑖

ℓ

𝑚=−ℓ

 

 
Where 𝑌ℓ𝑚 𝜉  are the complex Spherical Harmonics, 𝐵 is the bandwidth 
and 𝑗 is the polynomial order 



Simplifications 

• The product-sum of all Complex Spherical Harmonics in one 
“row” is just a simple Legendre polynomial: 

 

2𝑛 + 1

4𝜋
𝑃ℓ 𝜉

′ ∙ 𝜉 =  𝑌ℓ𝑚
∗ 𝜉 𝑌ℓ𝑚 𝜉′

ℓ

𝑚=−ℓ

 

 

• So needlets are defined in frequency space from orthonormal 
parts and are natively embedded on the sphere 



Legendre Polynomials 

• The Legendre polys are normalized to simplify the definitions. 
 

𝐿ℓ 𝜉
′ ∙ 𝜉 =

2𝑛 + 1

4𝜋
𝑃ℓ 𝜉

′ ∙ 𝜉  

 
• Legendre polys can be quickly generated iteratively using Bonnet’s 

Recursion: 
 

𝑛 + 1 𝑃𝑛+1 𝑥 = 2𝑛 + 1 𝑥𝑃𝑛 𝑥 − 𝑛𝑃𝑛−1 𝑥   
 

where   𝑃0 𝑥 = 1 
               𝑃1 𝑥 = 𝑥 

 
 
 



Littlewood-Paley Decomposition 

• The key part of the algorithm is the 𝑏
ℓ

𝐵𝑗
 function. 

 

𝑓 𝑡 =  
exp − 1

1−𝑡2
 , −1 ≤ 𝑡 ≤ 1

0,                        otherwise
 

 

𝑤 𝑢 =
 𝑓 𝑡 ⅆ𝑡
𝑢

−1

 𝑓 𝑡 ⅆ𝑡
1

−1

 

 

𝑝 𝑡 =  

1,                              0 ≤ 𝑡 ≤  1
𝐵

𝑤 1 − 2𝐵
𝐵−1

𝑡−
1
𝐵

, 1
𝐵
≤ 𝑡 ≤ 1

0,                                       𝑡 > 1

 

 

𝑏 𝑡 = 𝑝 𝑡
𝐵
− 𝑝 𝑡  

 
• Defined as a continuous function, evaluated at integer points. 

 



Littlewood Paley Decomposition 

• LP Decomposition allows us to break down spectral space into 
chunks of bandwidth 𝐵. 



Spherical Needlet 

• For use in signal space, the needlet is defined as: 

 

𝑒𝑖 𝜉 = 𝜆𝑖 𝑏
ℓ

𝐵𝑗
𝐿ℓ 𝜉 ∙ 𝜉𝑖

𝑑

ℓ=0

 

 

 

 

A single 
needlet 

over the 
sphere 

quadrature 
weight 

Littlewood-Paley 
weighting 

Legendre 
polynomial 

quadrature 
direction 



Spherical Needlet 



What does this integrate to? 



What does this integrate to? 

 𝑒𝑖 𝜉 ⅆ𝜉

 

𝜉∈𝕊

= 0 



Needlet B=2.0 and j=1 



Needlet B=2.0 and j=2 



Needlet B=2.0 and j=3 



Needlet B=3.0 and j=1 



Needlet B=2.4 and j=1 



Spherical Basis 

• The complete spherical basis is a set of needlets, each pointing in a 
quadrature direction 
 

Φ = 𝑒𝑖 𝑖∈(1,𝑁) 
 
1. Needlets are a solution to the Spherical Concentration Problem 

•  for a given bandwidth it is the most compact spatial support 
 

2. The sum of needlet bases over 𝑗 = 2,3,4, …  form a tight frame on the 
sphere. 
 

3. A needlet of order N can exactly reconstruct spherical polynomials of 
order N and below. 



Approximation Order 



Needlet vs. SH 



Monte Carlo Sampling 

• Sampling needlets correctly requires non-uniform sampling 



Fast Projection 

• Needlets are radially symmetric ( 𝜉 ∙ 𝜉𝑖   is a scalar) 

• The needlet function is 1D 

• Approximate the needlet with a LUT, lerp the values. 

Plot error of lerp LUT versus 
actual function. 



Fast Rotation 

• The same rotation idea as SH, generate a matrix that 
reinterprets a needlet as sums of other needlets. 

 

𝑀𝑖𝑗 = 𝑒𝑖 , 𝑅𝑒𝑗  

       =  𝑒𝑖 𝜉 𝑒𝑗 𝑅 𝜉 ⅆ𝜉
 

𝜉∈𝕊
 

 

• The bases 𝑒𝑖 and 𝑅𝑒𝑗 differ only in the quadrature direction. 

• Which falls out to be a 1D function… 



Fast Rotation 

• By calculating each angle offset 
integral and tabulating it, we can 
generate a rotation function. 



Key Features of a Spherical Basis 

• Radially symmetric basis 
– Allows fast projection 
– Allows fast and stable rotation 

 

• Defined from natively embedded atoms 
– No parameterization problems 
– Use lifting to construct a more performant basis 
– Spherical concentration shows that localization is possible 

 

• Using Frames 
– Allows simpler definition of the problem 
– Who needs successive approximation anyway? 



Future Work 

• Littlewood-Paley is just one partition of unity optimized for 
spectral concentration. Other papers have optimized for 
spatial and other metrics. 
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