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Highlevel goals

o Quality over quantity
e« Around 1200 agents per crowd, 500 on-screen
« Player should not distinguish between crowd & npc actors

« Ambient crowd behaviors
e Mill around
« Be aware of points of interest & react to player actions
o Level designer has partial control of placement & movement flows

e Panic crowd behaviors

o Evacuate the crowd area
« Help enhance the action experience of the game
« Never get in the way of the player during action
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Crowds in general

e Two main approaches to crowd simulation:
o Global knowledge / global solution to simulation

e Continuum based crowds with dynamically updated potential fields

o« Impressive results, especially looking at the actual simulation

o« 10.000 character army charging city gates, near-perfect evacuation of buildings etc.
e But: Usually requires a limited set of fixed goals

o Agent based

e No goals (just mill around)
o Very local behavior
« Movement can appear very erratic & the individual agents can seem stupid
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Crowds in general

o« Crowds in a game

e The "fun factor” is the most important thing

o Perfect simulation (no intersections or stopping up) becomes secondary

e« Must be very dynamic and react to player actions

o Level designhers must have quite a lot of manual control

o« Each agent must visually be of an acceptable quality, even when viewed up close

e My opinion
e« The best approach is that of a traditional, but lightweight, Al system
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Our crowd system

e« Main components of the crowd system
« Framework: The cell map, agent model, tools

o AIl: Steering & behavior selection
e Visuals: animation and character meshes
» Believability: integration with core gameplay features
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The cell map
« We could just add X agents to the world, but:

« We need very fast navigation mesh queries
« We need very fast neighborhood queries
« We need very fast checks for walls & other static obstacles

« We overlay a regular grid on top of the nav mesh

e This means that the crowd area is only 2.5D (no overlaps in height)
« Memory usage scales with area of a rectangle, even if walkable region is sparse
e Each cell stores
« Walkable/unwalkable flag
« Current agents in cell (stored as an intrusive singly linked list)
« Can also annotate the map with additional info, as needed for gameplay
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The cell map

e Cell annotations

e Exclusion zones

e Panic only cells

o« Ambient flow vectors
o Teleporters

e EXit zones
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Agent model

e Craig W. Reynolds
. Agent ‘particles”

Position
e Radius
e Forward vector
e Speed

e Steering input
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Tools: Agent placement

o Agents are distributed onto the cell map as:

e Manually placed individuals
e Manually placed groups of agents
« Randomly placed agents

o Manually placed individuals

o Originally a debugging tool, but ended up being used quite a lot by level designers

o Groups

This is what designers really wanted!
Position and shape: spherical or square
Agent count

Optionally: A list of POlIs.

Optionally: A list of idle animation overrides
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Crowd Al

e Based on a state machine

o Basic navigation states: Idle, “pending walk”, walk
« Other gameplay states: Alert, dead, possessed, prone, scared etc.

o State specific memory

o Each state can define a "memory class” which stores arbitrary AI memory data
o Placed in fixed-size (small) memory block on each agent
o« Wiped & initialized when entering state

o Every frame the agent "Thinks”

e Steps the A, using current state and current state memory
o Ask current state if a state change is wanted
« In some cases, change state randomly
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Steering: Pending walk

e Used when

o Agent is standing still, but wants to be moving.

e Purpose

o Find the best valid direction and time to start moving
e Since agent is usually in a crowded place this requires some Al logic

e Sub-phases

“Search for direction”
« Send out probes to check for wall collisions and other obstructing agents
« Probe direction is changed every frame, favoring directions in front of agent

"Wait for clear”
« Wait until agent can start moving
« Communicate a wanted state change to the agent (into walk state)
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Steering: Walk

e Used when
e Milling about

e Purpose

« Move agent around, avoiding collisions with walls and other agents

o Algorithm

e Find preferred direction
o Check for walls, and steer to avoid collision
e Check for avoid zones and ambient flows
« Apply wander behavior (Reynolds)
« Sample neighborhood for dynamic obstacles, select worst threat (Reynolds)
« Do "unaligned collision avoidance” to get actual steering direction (Reynolds+)
o Either accept the steering, or communitate a wish to stop moving

O lo-Interactive



GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering: Panic

o« Same as "Pending walk” / "Walk”, but tweaked differently

« Higher speed means different settings for probing for walls, collecting neighbors etc

o Panic steering relies heavily on “panic flows”

e Each exit in the crowd becomes one separate "flow channel”
« When cell map is generated, each flow channel is calculated
o Each cell stores: direction to exit, along shortest path, and total cost to reach that exit

o Each agent dynamically switches between flow channels to quickly flee the map

o« Needs some manual guidance/annotation in narrow spaces

« Panic flows are based on modified Dijkstra algorithm
e Shortest path generates choke points around corners
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Steering: Key learnings

e This turned out to be hard in dense environments!

e Lots of "magic numbers” to tweak
e Especially hard when having multiple movement speeds

e Using speed for steering

e Turned out to be critical!
o First decide on a initial preferred and max speed (for example: walk relaxed and walk fast)

e Each steering component (wall or dynamic avoidance) then reports:

« New preferred speed
« New maximum possible speed
« Decision is based on, for example, distance to wall or whether or not a speed change can
resolve a dynamic collision
« A real human often prefers slightly changing speed over changing direction

e Favor stopping to radically changing direction

O lo-Interactive



MARCH 5-9, 2012 WWW.GDCONF.COM

Video: Steering behaviors
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Behavior selection

o Navigation Al automatically handles state changes
o More specific Al states are handled differently

o A data-driven system makes the crowd react to various players actions
o« For example: aiming a gun, shooting, acting suspicious

o A player action spawn up to 3 user-configured zones

o Radius & angle (spherical or cone)
o Agent reaction type: (POI, avoid, alert, scare, go prone)
Reaction types are listed in “order of importance”, and a zone can override less

important zones
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Behavior zones

POI

AVOID
ALERT
SCARE
PRONE
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Behavior zone pulses

e Zones continously send "pulses” into the crowd

o This way each zone "pushes” itself on the affected agents

« When an agent is hit by a behavior pulse
Is this is now the currently most important behavior zone?

e Check current agent mood (ambient, alerted, scared, paniced, dead)
« Check "inflicted mood” from zone (derived from reaction type)

e During "Think”

e If mood for current zone is strictly worse than the current agent mood, then we change Al state

o Benefits of system
o Level designer configures the behavior on a per-crowd basis
e Quick and easy way to handle multiple inputs to the agents
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Video: Behavior selection
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Animation: First attempt
« What and how?

Fit animations on top of
simulation

Share a number of looping clips
between all agents (idle, walk,

run etc)

At any time: animation state for

idle slow walk

walk

WWW.GDCONF.COM
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idle animation loop
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walk animation loop

I slow walk animation loop I

i

an agent is two animation IDs [ s imation 1oop

and a blend weight

Concerned about animation

performance
Simple to implement

1
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Animation: First attempt

e Pros
. Performance was great
« Navigation logic was stable
e Agents can move at any speed!

e Cons

e« Overall robotic look and feel
. Foot sliding in transitions: idle -> walk -> idle
. No turn/banking animations
« Agent animation looks synchronized

« S0 we added multiple loops per animation, started at random times...
e« Tedious and manual approach to controlling animation state from Al code
¢ Code involved in adding new animations to the system

Hard to avoid animation glitches and blend errors

e Overall
e« The approach was valid, but we had higher ambitions than that....
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Animation: Second try
. What and how?

Ambitious goal - 500 agents on screen with no foot sliding plus support for transition and
turn/banking animations

. Eased Ion heavily modified version of "Near-optimal Character Animation with Continous
ontrol”
« Annotated motion clips, high-level steering inputs, data driven

. Aglents ?re now moved by a trajectory channel in the animations, rather than from steering
velocity!

Each visible agent now needs a uniquely blended animation pose, much like an ordinary NPC

° Why?

Player gets very close to the individual agents

« We felt that having a high quality of animation on each individual was needed for achieving
a believable crowd experience

e Avoid the robotic feel
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Animation: Second try

e Pros

e Looks much better ©
e Completely removed tedious animation management code from the crowd Al
o Greatly simplified the Al code itself

e Cons

e Took a lot of work to implement and optimize
e In rare cases a bit more control over the animations can be useful

« And very importantly: Agents reacts much slower to steering input, which makes it harder to avoid
collisions and intersections!

e Overall conclusion

e« It was a great success!

e« The approach we used for crowd agents might be how we control real NPCs in future
games...
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Animation

e Check GDC Vault for: "Animation
Driven Locomotion for Smoother
Navigation” for further inspiration!

(Gabriel Leblanc, Shawn Harris, Bobby
Anguelov)
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Believability

o Main challenges:

o« Core game mechanics: close combat, human shield etc
o Detail animation
o Visual variety
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Core game mechanics

e No wish to have duplicate implementation

e POssession system
e On-demand upgrade agent to full NPC Al
o Allocates small pool of invisible NPCs

o Simple API allows game programmers to switch between
crowd agent and NPC

o Made it trivial to support advanced gameplay mechanics
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Detail animation

e Head IK
e Crowd acts

o Talk on phone, smoke, sit on bench
o Uses possession system and existing cut-scene tools

e« Spawns randomly near player

e Upper body acts
o Lightweight overlay anims: cough, wave etc.
o Can play while agent walks around

O lo-Interactive



Visual variety

o Unique scaling factor for each agent

e Small amount: ~5%
e Softens up horizon
o Does wonders for percieved diversity of crowd

e Diffuse texture overrides

o Simply replace the diffuse texture of material
o Cheap way of having red shirt, yellow shirt etc..
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Performance: PS3

e Some numbers: 1200 agents simulated, 500 on-screen
e PPU: 5ms

e« Animation system: ~2ms
e Crowd Al / steering: ~2ms
e Framework: ~1ms

e SPU: ~20ms, distributed across multiple SPUs

e Animation sampling
Animation blending

Animation selection logic
Frustum and occlusion culling
Crowd AI sensors (more later)

e GPU: 8ms

o Listed here as an example, but obviously very dependent on render tech and meshes used
o« In G2: the vertex shader is limiting factor on PS3 due to skinning massive amount of vertices
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Performance

e Scaling?
e« System has very low general overhead

e Scales nearly linearly with number of agents in crowd
o Culled/on-screen ratio also affects performance, due to animation cost

e Memory layout: Agent data

On the PS3 the memory layout is one of the most important things for performance
e Al: code is pretty simple, but called many times and:
« Performs a /ot of neighborhood searches
« Inspects properties on all neighbor agents
Size of a full agent ~256 bytes
Separate out "agent core”. Stores the most basic properties: position, speed etc. 36 bytes
Each agent object has a pointer to its corresponding core
Allocate all cores as a single, 128 byte aligned, block of memory (1200 agents: 42kb)
Reduces cache missing during simulation and fits on SPUs
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Memory layout: Cell map

o Conceptually each cell stores many different pieces of data:
« Walkable/non-walkable (and other “cell flags”)
e Flow vectors
o Heights
o Head pointer of linked list of current occupiers

o Bad implementation
o« Implement class ZCell, map is an array of ZCell objects

o Good implementation
e« Map is 4 arrays, each storing a different attribute
e Array of struct vs. struct of arrays

e Usually an algorithm is only interested in one of the attributes
« Which can then be 128 byte aligned
« Which can (more easily) fit on SPU local store
« Spans less memory, in turn causing less cache misses
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Crowd AI & steering on SPUs

o Moving the entire AI code to SPU is hard

. Has many dependencies between components in the system
e Virtual methods

o Profiling showed a few hotspots

. Neighborhood gathering

. Raycasting through cell map

. Selecting "worst threat” for steering

e All hotspots are isolated algorithms, working on a limited input!

o Added sensor system

. Sensor input: position and radius for neighborhood, raycast requests etc
. Sensor output: Current neighborhood, current worst threat, ray results
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Steering with sensor data

e Sensor input is usually fixed

. Probe a certain distance ahead of agent for walls
e Collect around agent
. Select worst threat

e Sensor input is usually configured once when entering Al state
o Actually, sensor output is not 1 frame delayed

. (except for first frame in state)

Wait = Kick Wait z Kick
SO Think Integrate SehsOF = Think Integrate Sensor
Frame O Frame 1
Crowd Crowd
FrameUpdate FrameUpdate
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Sensor updates on SPUs

o Each job updates X number of agents
e So it fans out on multiple SPUs

o Needed data on local storage

e Agent cores: ~42kb
e Forray casts: ~16kb
o Our crowds have around 16k cells
« Cell flags: Array of bytes
o For neighborhood searches: ~32kb
« Head pointers from cell map (stored as 16bit indices)
o Linked list is intrusive, stored in agent cores
e Sensor input/output for each of the X agents: ~3kb (30 agents per job)

o In total: ~93kb of data needed. Plenty of room for code.
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Conclusions

« We managed to create a new crowd system that is a significant step up from
our previous system

« We managed to achieve very good performance, which was necessary since
the crowd has to integrate with a full game

o Having a proper layout of data is critical for performance when handling
massive amount of characters

o Itis atime consuming task to tweak all the magic humbers in steering code

« Having proper animation on characters in very dense crowds is very hard,
since steering relies on quick reactions from the characters

O lo-Interactive



GAME DEVELODPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM
Questions?

e (Also feel free to email me at: kasperbf@ioi.dk)

e A big thank you to:
o Michael Blttner
o Nis Haller Baggesen
o« Bobby Anguelov
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