Crowds in Hltman Absolution

Kasper Fauerby

Lead Programmer at IO Interactive

GAME DEVELOPERS CONFERENCE

o - TEsssssessssssessamEseEsss s s SANFRANDISCE, BA
O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Highlevel goals

o Quality over quantity
e« Around 1200 agents per crowd, 500 on-screen
« Player should not distinguish between crowd & npc actors

« Ambient crowd behaviors
e Mill around
« Be aware of points of interest & react to player actions
o Level designer has partial control of placement & movement flows

e Panic crowd behaviors

o Evacuate the crowd area
« Help enhance the action experience of the game
« Never get in the way of the player during action

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Crowds in general

e Two main approaches to crowd simulation:
o Global knowledge / global solution to simulation

e Continuum based crowds with dynamically updated potential fields

o« Impressive results, especially looking at the actual simulation

o« 10.000 character army charging city gates, near-perfect evacuation of buildings etc.
e But: Usually requires a limited set of fixed goals

o Agent based

e No goals (just mill around)
o Very local behavior
« Movement can appear very erratic & the individual agents can seem stupid

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Crowds in general

o« Crowds in a game

e The "fun factor” is the most important thing

o Perfect simulation (no intersections or stopping up) becomes secondary

e« Must be very dynamic and react to player actions

o Level designhers must have quite a lot of manual control

o« Each agent must visually be of an acceptable quality, even when viewed up close

e My opinion
e« The best approach is that of a traditional, but lightweight, Al system

O lo-Interactive

WWW.GDCONF.COM

MARCH 5-9, 2012

0
b
£
v
0
|
3
9
c
-
9

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Our crowd system

e« Main components of the crowd system
« Framework: The cell map, agent model, tools

o AIl: Steering & behavior selection
e Visuals: animation and character meshes
» Believability: integration with core gameplay features

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

The cell map
« We could just add X agents to the world, but:

« We need very fast navigation mesh queries
« We need very fast neighborhood queries
« We need very fast checks for walls & other static obstacles

« We overlay a regular grid on top of the nav mesh

e This means that the crowd area is only 2.5D (no overlaps in height)
« Memory usage scales with area of a rectangle, even if walkable region is sparse
e Each cell stores
« Walkable/unwalkable flag
« Current agents in cell (stored as an intrusive singly linked list)
« Can also annotate the map with additional info, as needed for gameplay

O lo-Interactive

MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE® 2012

The cell map

e Cell annotations

e Exclusion zones

e Panic only cells

o« Ambient flow vectors
o Teleporters

e EXit zones

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Agent model

e Craig W. Reynolds
. Agent ‘particles”

Position
e Radius
e Forward vector
e Speed

e Steering input

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Tools: Agent placement

o Agents are distributed onto the cell map as:

e Manually placed individuals
e Manually placed groups of agents
« Randomly placed agents

o Manually placed individuals

o Originally a debugging tool, but ended up being used quite a lot by level designers

o Groups

This is what designers really wanted!
Position and shape: spherical or square
Agent count

Optionally: A list of POlIs.

Optionally: A list of idle animation overrides

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

The crowd fra mework

KEL> Help on - Debug build - DX1o.
[2oons used For culling. Roon $6°RoonNane: scele L 635 L seat sons/LozD_ o708ty eanihorogt /¢ lna‘!uun/cumpiﬁ eENTIty_v_61/1L92D_chintiown/26A_Roon_CH
efau)
¥ S

p223.843. 90,5725 ZRanaelo. 054700001

75
Denta keys enanioa

lends: 7 Omni2D 205 _SHbts/@2 - Capsule O
¢ I

treaming stat

2 -
valid 11213¢699> - Installing 0<6> - Loading 0 - Failed o

’-O-" lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Crowd Al

e Based on a state machine

o Basic navigation states: Idle, “pending walk”, walk
« Other gameplay states: Alert, dead, possessed, prone, scared etc.

o State specific memory

o Each state can define a "memory class” which stores arbitrary AI memory data
o Placed in fixed-size (small) memory block on each agent
o« Wiped & initialized when entering state

o Every frame the agent "Thinks”

e Steps the A, using current state and current state memory
o Ask current state if a state change is wanted
« In some cases, change state randomly

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering: Pending walk

e Used when

o Agent is standing still, but wants to be moving.

e Purpose

o Find the best valid direction and time to start moving
e Since agent is usually in a crowded place this requires some Al logic

e Sub-phases

“Search for direction”
« Send out probes to check for wall collisions and other obstructing agents
« Probe direction is changed every frame, favoring directions in front of agent

"Wait for clear”
« Wait until agent can start moving
« Communicate a wanted state change to the agent (into walk state)

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering: Walk

e Used when
e Milling about

e Purpose

« Move agent around, avoiding collisions with walls and other agents

o Algorithm

e Find preferred direction
o Check for walls, and steer to avoid collision
e Check for avoid zones and ambient flows
« Apply wander behavior (Reynolds)
« Sample neighborhood for dynamic obstacles, select worst threat (Reynolds)
« Do "unaligned collision avoidance” to get actual steering direction (Reynolds+)
o Either accept the steering, or communitate a wish to stop moving

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering: Panic

o« Same as "Pending walk” / "Walk”, but tweaked differently

« Higher speed means different settings for probing for walls, collecting neighbors etc

o Panic steering relies heavily on “panic flows”

e Each exit in the crowd becomes one separate "flow channel”
« When cell map is generated, each flow channel is calculated
o Each cell stores: direction to exit, along shortest path, and total cost to reach that exit

o Each agent dynamically switches between flow channels to quickly flee the map

o« Needs some manual guidance/annotation in narrow spaces

« Panic flows are based on modified Dijkstra algorithm
e Shortest path generates choke points around corners

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering: Key learnings

e This turned out to be hard in dense environments!

e Lots of "magic numbers” to tweak
e Especially hard when having multiple movement speeds

e Using speed for steering

e Turned out to be critical!
o First decide on a initial preferred and max speed (for example: walk relaxed and walk fast)

e Each steering component (wall or dynamic avoidance) then reports:

« New preferred speed
« New maximum possible speed
« Decision is based on, for example, distance to wall or whether or not a speed change can
resolve a dynamic collision
« A real human often prefers slightly changing speed over changing direction

e Favor stopping to radically changing direction

O lo-Interactive

MARCH 5-9, 2012 WWW.GDCONF.COM

Video: Steering behaviors

1% crowdscene AOE entity - Editor . e |
Fle Edt Vie Toos Engne Help
n % 9]
Scene 3 x| Engne(iaasaLs) 3 x
s 2% 8O » Word|[x[v]z sllinjs -
Entty Subtree (E6L 2ftop| 1 Speed 1 t x = Default - %@ & B oot Comen = <none> v
Scene 4748

o0
ROGMED: 65535 RooMNARD: < ThoGroatouts

CromdBendir€nsty

2656 ZRangoLo. 05-3000.01

ytes <0.01 MBS
CromdTeeperEntty0l

HMSCrowReschoretss
A reacton 1
2 reacton 2

. 086
s B5e
2o
rors (3) Warmings (3) ax
WOnge Descpbon
engine exs (7040) WMo achve remoning 1d
)

% [Ybax 30 Neighboehood

eogine exs (7040)

valid 4632(32) - Installing Coading

@ 3.cows L usmings

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Behavior selection

o Navigation Al automatically handles state changes
o More specific Al states are handled differently

o A data-driven system makes the crowd react to various players actions
o« For example: aiming a gun, shooting, acting suspicious

o A player action spawn up to 3 user-configured zones

o Radius & angle (spherical or cone)
o Agent reaction type: (POI, avoid, alert, scare, go prone)
Reaction types are listed in “order of importance”, and a zone can override less

important zones

O lo-Interactive

MARCH 5-9, 2012 WWW.GDCONF.COM

Behavior zones

POI

AVOID
ALERT
SCARE
PRONE

€ ¥ lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Behavior zone pulses

e Zones continously send "pulses” into the crowd

o This way each zone "pushes” itself on the affected agents

« When an agent is hit by a behavior pulse
Is this is now the currently most important behavior zone?

e Check current agent mood (ambient, alerted, scared, paniced, dead)
« Check "inflicted mood” from zone (derived from reaction type)

e During "Think”

e If mood for current zone is strictly worse than the current agent mood, then we change Al state

o Benefits of system
o Level designer configures the behavior on a per-crowd basis
e Quick and easy way to handle multiple inputs to the agents

O lo-Interactive

MARCH 5-9, 2012 WWW.GDCONF.COM

Video: Behavior selection

crowdscene ADE entity - Editor
Fle Edt Viea Took Engne Help
" > 9
Scene
ety
Scene LA e RGeS 25057711
<05 i an o = Bowid pusidl - DXso, o
S5z wiry Lo vor CUTSsnG. RAGRLDY CLs ROGMNONG CINPLIPATIITE AP
v wrens i
CromcBendirntty 3 195 662 200001
v it CAnD N it 0, CaprTe ©
oF Z i Eaehp MibEpel 1
SRR AT CanD ING NEEIPETEr o
n POBG L athD EAUDY GOD/LOD) TEED0D by Len (0L7E W)
T
g bl ene tiear o
Bl FOrs BiTotated: o
PpGED s £ e Srona0eT oKl
Goue by BrORUS B
Propertes
*aa bbb ec
Ouspiay name vave
ame Aim reaction 1
Type tonErtity class] enttytype ZRe
(sspecss
(Atritnaes) X
icrowdacone_AOE ertily
Resction CROWDSPHERE _SC
Timeout s
Radius 3
sngle %
e duiny hint 0
Far sy (hint) 07
PO height offset 16
Font of nterest 4 Troe
Resction Z
Hame:
Type Resid:
Constraint
Unknown debug Valia 4630¢32) - Istalling|0co)
\AssemblyScenes! TEST\kasperbf\ crowdscene, AOE entty T

*G" lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012

MARCH 5-9, 2012

Animation: First attempt
« What and how?

Fit animations on top of
simulation

Share a number of looping clips
between all agents (idle, walk,

run etc)

At any time: animation state for

idle slow walk

walk

WWW.GDCONF.COM

run

n
"4

I T
0.0 m/s 0.75 m/s

T
1.4 m/s

idle animation loop

1

1

=+

walk animation loop

I slow walk animation loop I

i

an agent is two animation IDs [s imation 1oop

and a blend weight

Concerned about animation

performance
Simple to implement

1

O lo-Interactive

L]
3.0 m/s

Agent 1: WalkiD, RuniD, 0.2
Agent 2: WalkiD, RuniD, 0.5

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Animation: First attempt

e Pros
. Performance was great
« Navigation logic was stable
e Agents can move at any speed!

e Cons

e« Overall robotic look and feel
. Foot sliding in transitions: idle -> walk -> idle
. No turn/banking animations
« Agent animation looks synchronized

« S0 we added multiple loops per animation, started at random times...
e« Tedious and manual approach to controlling animation state from Al code
¢ Code involved in adding new animations to the system

Hard to avoid animation glitches and blend errors

e Overall
e« The approach was valid, but we had higher ambitions than that....

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Animation: Second try
. What and how?

Ambitious goal - 500 agents on screen with no foot sliding plus support for transition and
turn/banking animations

. Eased Ion heavily modified version of "Near-optimal Character Animation with Continous
ontrol”
« Annotated motion clips, high-level steering inputs, data driven

. Aglents ?re now moved by a trajectory channel in the animations, rather than from steering
velocity!

Each visible agent now needs a uniquely blended animation pose, much like an ordinary NPC

° Why?

Player gets very close to the individual agents

« We felt that having a high quality of animation on each individual was needed for achieving
a believable crowd experience

e Avoid the robotic feel

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Animation: Second try

e Pros

e Looks much better ©
e Completely removed tedious animation management code from the crowd Al
o Greatly simplified the Al code itself

e Cons

e Took a lot of work to implement and optimize
e In rare cases a bit more control over the animations can be useful

« And very importantly: Agents reacts much slower to steering input, which makes it harder to avoid
collisions and intersections!

e Overall conclusion

e« It was a great success!

e« The approach we used for crowd agents might be how we control real NPCs in future
games...

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Animation

e Check GDC Vault for: "Animation
Driven Locomotion for Smoother
Navigation” for further inspiration!

(Gabriel Leblanc, Shawn Harris, Bobby
Anguelov)

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Believability

o Main challenges:

o« Core game mechanics: close combat, human shield etc
o Detail animation
o Visual variety

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Core game mechanics

e No wish to have duplicate implementation

e POssession system
e On-demand upgrade agent to full NPC Al
o Allocates small pool of invisible NPCs

o Simple API allows game programmers to switch between
crowd agent and NPC

o Made it trivial to support advanced gameplay mechanics

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Detail animation

e Head IK
e Crowd acts

o Talk on phone, smoke, sit on bench
o Uses possession system and existing cut-scene tools

e« Spawns randomly near player

e Upper body acts
o Lightweight overlay anims: cough, wave etc.
o Can play while agent walks around

O lo-Interactive

Visual variety

o Unique scaling factor for each agent

e Small amount: ~5%
e Softens up horizon
o Does wonders for percieved diversity of crowd

e Diffuse texture overrides

o Simply replace the diffuse texture of material
o Cheap way of having red shirt, yellow shirt etc..

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Performance: PS3

e Some numbers: 1200 agents simulated, 500 on-screen
e PPU: 5ms

e« Animation system: ~2ms
e Crowd Al / steering: ~2ms
e Framework: ~1ms

e SPU: ~20ms, distributed across multiple SPUs

e Animation sampling
Animation blending

Animation selection logic
Frustum and occlusion culling
Crowd AI sensors (more later)

e GPU: 8ms

o Listed here as an example, but obviously very dependent on render tech and meshes used
o« In G2: the vertex shader is limiting factor on PS3 due to skinning massive amount of vertices

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Performance

e Scaling?
e« System has very low general overhead

e Scales nearly linearly with number of agents in crowd
o Culled/on-screen ratio also affects performance, due to animation cost

e Memory layout: Agent data

On the PS3 the memory layout is one of the most important things for performance
e Al: code is pretty simple, but called many times and:
« Performs a /ot of neighborhood searches
« Inspects properties on all neighbor agents
Size of a full agent ~256 bytes
Separate out "agent core”. Stores the most basic properties: position, speed etc. 36 bytes
Each agent object has a pointer to its corresponding core
Allocate all cores as a single, 128 byte aligned, block of memory (1200 agents: 42kb)
Reduces cache missing during simulation and fits on SPUs

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Memory layout: Cell map

o Conceptually each cell stores many different pieces of data:
« Walkable/non-walkable (and other “cell flags”)
e Flow vectors
o Heights
o Head pointer of linked list of current occupiers

o Bad implementation
o« Implement class ZCell, map is an array of ZCell objects

o Good implementation
e« Map is 4 arrays, each storing a different attribute
e Array of struct vs. struct of arrays

e Usually an algorithm is only interested in one of the attributes
« Which can then be 128 byte aligned
« Which can (more easily) fit on SPU local store
« Spans less memory, in turn causing less cache misses

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Crowd AI & steering on SPUs

o Moving the entire AI code to SPU is hard

. Has many dependencies between components in the system
e Virtual methods

o Profiling showed a few hotspots

. Neighborhood gathering

. Raycasting through cell map

. Selecting "worst threat” for steering

e All hotspots are isolated algorithms, working on a limited input!

o Added sensor system

. Sensor input: position and radius for neighborhood, raycast requests etc
. Sensor output: Current neighborhood, current worst threat, ray results

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Steering with sensor data

e Sensor input is usually fixed

. Probe a certain distance ahead of agent for walls
e Collect around agent
. Select worst threat

e Sensor input is usually configured once when entering Al state
o Actually, sensor output is not 1 frame delayed

. (except for first frame in state)

Wait = Kick Wait z Kick
SO Think Integrate SehsOF = Think Integrate Sensor
Frame O Frame 1
Crowd Crowd
FrameUpdate FrameUpdate

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Sensor updates on SPUs

o Each job updates X number of agents
e So it fans out on multiple SPUs

o Needed data on local storage

e Agent cores: ~42kb
e Forray casts: ~16kb
o Our crowds have around 16k cells
« Cell flags: Array of bytes
o For neighborhood searches: ~32kb
« Head pointers from cell map (stored as 16bit indices)
o Linked list is intrusive, stored in agent cores
e Sensor input/output for each of the X agents: ~3kb (30 agents per job)

o In total: ~93kb of data needed. Plenty of room for code.

O lo-Interactive

GAME DEVELOPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Conclusions

« We managed to create a new crowd system that is a significant step up from
our previous system

« We managed to achieve very good performance, which was necessary since
the crowd has to integrate with a full game

o Having a proper layout of data is critical for performance when handling
massive amount of characters

o Itis atime consuming task to tweak all the magic humbers in steering code

« Having proper animation on characters in very dense crowds is very hard,
since steering relies on quick reactions from the characters

O lo-Interactive

GAME DEVELODPERS CONFERENCE® 2012 MARCH 5-9, 2012 WWW.GDCONF.COM
Questions?

e (Also feel free to email me at: kasperbf@ioi.dk)

e A big thank you to:
o Michael Blttner
o Nis Haller Baggesen
o« Bobby Anguelov

O lo-Interactive

mailto:kasperbf@ioi.dk

