
Rigging a Resident Evil
Inside the Bone Code of Operation Raccoon City

Ben Hanke
GDC 2012

Ben Hanke
@repstos

Software Engineer at Slant Six Games, 2007 – Present
–Worked on various engine features, tools and tech
–Resident Evil: Operation Raccoon City
– SOCOM: US Navy SEALs Confrontation

Immersive Education, 2001 – 2007
– Educational software using games technology
– Kar2ouche, MediaStage, MissionMaker

Oxford Brookes University, 1998 - 2001
– B.Sc (Hons) Intelligent Systems

Slant Six Games

• Independent studio founded 2005

• Based in Vancouver, BC

• All Slant Six games are
developed on our internal,
multi-platform (PC, XBOX 360,
PS3) engine technology

• Includes runtime, editors and
toolsets for: Graphics,
Animation, AI, Networking, UI,
Core, High-level Gameplay

Overview

• Presenting a runtime solution for helper bones using Maya expressions

• Started as R&D project to improve character skinning for RE:ORC

• Saved us lots of time and memory in the long run

• Now a vital part of our animation engine

• Simple enough to explain in a lecture

• If you like it, you can do it too!

RequirementsRequirements

© Capcom Co., Ltd.

Advanced vs. Simple RigAdvanced vs. Simple Rig

© Capcom Co., Ltd.

Use Cases

 One basic animation rig for animators.
 Additional, arbitrary helper bones for character artists.
 Overcome limitations of smooth blending across joints.
 Decouple animation and character rigging workflow.
 Clothing constraints: Skirts, collars, seams, sliding armour plates.
 Anatomic details: Twist bones for forearms, shoulder blades, biceps.
 Drive complex mesh from basic skeleton, e.g. hydraulic leg.

Maya Expressions

 Written in MEL (Maya Embedded Language)
 Read/write local space joint transforms
 Variables: joint.attribute

− hips.translateY = [value in cm]
− leftwrist.rotateX = [value in degrees]

 One output, multiple inputs
 Can be interdependent

translate X Y Z

rotate X Y Z

scale X Y Z

Authoring in MayaAuthoring in Maya

[Authoring Demo][Authoring Demo]

COLLADA Export

<expression
id = "RightBack_AUTO_rotateX"
ixp = ".O[0] = .I[0]/1.7;"
o0 = "RightBack_AUTO.rotateX"
i0 = "RightShoulder.rotateZ”
init = "0"

/>

Test Data Analysis
 117 expressions total, 20 branching.
 Canonicalized and sorted expression strings.
 Found lots of repetition.
 Most expressions very simple.
 Only one level of if/else branch
 Lots of division (slow and unsafe) :-(
 Division always by a constant :-)
 Refactored all division as multiplication.
 Found 9 function types (ignoring branches)

Function Frequency

Operations

Ternary
Multiply & Add madd(a, b, c) a * b + c

Multiply & Subtract msub(a, b, c) a * b - c

Negative Multiply &
Subtract

nmsub(a, b, c) c – a * b

Binary
Add add(a, b) a + b

Subtract sub(a, b) a - b

Multiply mul(a, b) a * b

Divide div(a, b) a / b

Test Data Analysis
 91% of expressions in Vector's rig achievable with just 1 instruction.
 Remaining 9% achievable with 2 instructions.

Expression Form Functional Form

= a = a

= a * b = mul(a, b)

= a * b + c = madd(a, b, c)

= a * b - c = msub(a, b, c)

= c – a * b = nmsub(a, b, c)

= a * b + (c * d) = madd(a, b, mul(c, d))

= d – (a + b) * c = nmsub(add(a, b), c, d)

= (a – b) * c + d = madd(sub(a, b), c, d)

= a * b – c * d = msub(a, b, mul(c, d))

Branching

MEL Source Functional Representation

if(.i[0]>=25)
{
 .o[0]=((.i[0]-25)/4)+(.i[1]/-60);
}
else
{
 .o[0]=(.i[1]/-60);
}

select(
 cmpgte(.i[0], 25),
 madd(
 sub(.i[0], 25),
 0.25,
 mul(.i[1],
 -0.016666667)),
 mul(.i[1],
 -0.016666667)
);

Why Reinvent the Wheel?

• Considering existing solutions (Lua, Lex & Yacc, etc.)

– What problems are they designed to solve?

– How does that overlap with our requirements?

– What are our constraints?

– What new problems could they cause?

PipelinePipeline

// TODO: Hilarious joke connecting lickers and pipes!// TODO: Hilarious joke connecting lickers and pipes!

© Capcom Co., Ltd.© Capcom Co., Ltd.

Parsing
 Command line program implemented in C#
 Not a general purpose compiler (cheat!)
 Tokenization limited to mathematical expressions – no MEL.
 High level syntax and patterns matched with RegEx.

szExpression = @"[a-z0-9.\(\)\[\]\+\-*/]+";
szInputVariable = @"^.i\[[0-9]+\]";
szComparison = szExpression + "[<>=]+" + szExpression;

 Pro Tip: Use the DebuggerDisplay attribute!

Enums

Tokenization

 Remove white space
 Detect and validate high-level control structure and output assignment
 Extract clean expression strings
 Classify and pop all tokens

 @"^.o\[0\]" Throw exception (mustn't read output!)
 @"^.i\[[0-9]+\]" Pop variable node with index
 @"^[0-9]*\.?[0-9]+" Pop constant node with value
 () + - * / Pop token node with type

 Pro Tip: Throw detailed exception messages for errors found during parsing.

Collapse Parentheses

Collapse Parentheses

Collapse Parentheses

Finish by removing any redundant expression nodes with one or no children.
Report an error if you find any orphaned parentheses.

Refactor Unary Negation

Bake Constant Expressions
 Recursively bake all constant expression nodes.
 Once this process is complete, all 'untyped' expression nodes contain at least one variable,

one operator, and one other variable or constant.

Binary Operators

 Convert all operator token nodes into binary expression nodes.
 Process * and / first, before + and -.
 All token type nodes now gone.

Refactor Division as Multiplication

Add(
Mul(

Sub(.i[0], 25.0f),
0.25f

),
Mul(.i[1], -0.16666667f)

)

Collapse to Ternary

add(mul(a,b),c) → madd(a,b,c)

add(c,mul(a,b)) → madd(a,b,c)

sub(mul(a,b),c) → msub(a,b,c)

sub(c,mul(a,b)) → nmsub(a,b,c)

Final Expression Tree

madd(
sub(.i[0], 25.0f),
0.25f,
mul(.i[1], -0.016666667f)

)

((.i[0]-25)/4)+(.i[1]/-60)

Optimization

• Examine your input and output

• Bytecode length → Runtime cost

• Look for patterns that waste cycles

– Constant expressions

– Multiplication by 1 or 0

– Identical if/else branches

• Trim nodes

• Add new fixed functions

Binary Export
 Sort expressions for writing according to dependencies.
 Count unique constants in expression and assign indices.
 Write unique joint hash name, index and constant arrays.
 Walk expression tree to write instructions in runtime evaluation order.

– Breadth first for recursive.
– Depth first for iterative.

 Each node is stored two values packed into a byte as (type | arg)

Node Type (2 bits) Argument (up to 6 bits) Arity
Expression Operation type, e.g. Madd 2 or 3 (binary or ternary op)
Variable Variable index 0
Constant Constant index 0
CompareAndSelect Comparison type, e.g. GreaterThan 4 (lhs, rhs, if branch, else branch)

Example Output

RuntimeRuntime

© Capcom Co., Ltd.© Capcom Co., Ltd.

Engine Integration

• Pose format must be convertible to and from Maya representation.
– Model space matrices → local space Euler angles, model space translations.

• Suitable for asynchronous, parallel jobs.
– e.g. SPURS on PS3, thread pools on X360/PC.

• Jobs small and self-contained, so easy to hide latency.

• Kick when animation pose is ready.
– After pose blending, IK, ragdoll, NIS streaming, facial animation, etc.

 Results deadline: in time for skinning on GPU/SPU.

Job I/O
 Shared, read-only inputs (cacheable):

 Expression data (Average ~10kB)

 Bind pose and parent indices (Average ~10kB)

 Anim-to-render skeleton index remapping table.

 Current animation pose [read-only] (68 bones for player character)
 Output render pose [write-only] (Average = 147, max = 176)
 Typically ~40kB local store required on SPU.
 Animation pose must be read-only after jobs are queued.
 Render pose must not be read until jobs are complete.

Converting Pose to 'Maya Space'

 Your Maya units may vary (we use degrees and centimeters).
 Convert translation to local space:

jointMat * Inverse(parentMat)
 Undo the bind pose rotation:

jointMat * Inverse(bindPoseMat * parentMat)
 Convert rotation to Euler angles in degrees: rotateX, rotateY, rotateZ
 Convert translation to centimeters: translateX, translateY, translateZ

 The reverse transform is simply:
rotation * bindPoseRotation * translation * parent

 Subtract the original bind pose value of the expression as exported from Maya!

Evaluating Expressions
 Simple recursive or iterative virtual machine where each iteration/call:

– Consumes a byte
– Unpacks node type and payload value, e.g. variable[index]
– Switches on node type
– Calculates result for parameter nodes as determined by arity
– Performs fixed function on parameters

 Variable and constant nodes simply look up their value by index.
 Function nodes either recurse or push and pop values onto stack array.

Pro Tip: Check for stack overflow on SPU, particularly in debug builds.

ApplicationsApplications

© Capcom Co., Ltd.© Capcom Co., Ltd.

Unique Character Features

• Rigid knee and elbow pads.

• Improved seams.

• Beltway's robotic leg.

• Constraints for skirts and collars – great for mocap!

• Boss weak spot reveal animations controlled by single bone rotation.

Retargeting

 Playable characters in RE:ORC share animations.
 Animators work on a single standard rig.
 Female character rigs mostly driven by expressions.
 Meshes skinned to helper bones.
 Used to adjust height, shoulder width, arm and leg length.
 Saved ~10MB RAM and ~18 man-months of animator time for

retargeting and maintaining female animations alone.

© Capcom Co., Ltd.Rigging by Simon Mills

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

© Capcom Co., Ltd.

Advantages
 Decouples character art and animation. workflow. Maya / Motion Builder.
 WYSIWYG between Maya and engine.
 Works with procedural anim, e.g. IK, ragdoll, targeting.
 Streamed mocap data can be applied to characters interchangeably.
 Completely stateless.
 Very stable, especially with no division.
 Extremely lightweight and fast.
 Easy to hide with asynchronous jobs.
 Negligible GPU cost.

Disadvantages

 Female rig retargeting approach not physically based.

 Can cause some problems with IK and fully extended limbs.

 Limited to local space calculations.

Stats
 45 characters use expressions in our game.
 Player animation skeleton has 68 bones.
 Average render bone count: 147 (Maximum: 176)
 Average expression count per character: 134 (Maximum: 255)
 Average binary file size: 10kB (Maximum: 14.2kB for Claire Redfield)
 Average bytecode length per expression: 5.46 (Maximum: 65)
 Average unoptimized bytecode length: 6.2 (Maximum: 77)
 Average SPU time per character (Optimized: 114.25μs, Unoptimized: 122.5μs)
 Average PS3 PPU time per character: 5μs (Job setup)
 Average Xbox 360 time per character: 343μs

Future Work
 Live pose transfer between Maya and engine for debugging.
 Add pipeline support for multiple compare/select branches.
 Lazy evalation of branches at runtime.
 Lazy conversion of pose transforms to Maya space.
 Eliminate code branches from evaluation loop (assembly/vector intrinsics)
 Write skinning transforms to command buffer hole / texture directly from job.

 This will remove need for temporary render pose array storage, average ~10kB per character.

 Look at adding other useful built-in functions such as Min / Max.
 Support More advanced rigging features from Maya such as spline IK.

Questions?Questions?

If you have questions about this talk:If you have questions about this talk:

bhanke@slantsixgames.combhanke@slantsixgames.com

If you are interested in working with our game engine:If you are interested in working with our game engine:

info@slantsixgames.cominfo@slantsixgames.com

All rigging in this presentation, including female rig solution:All rigging in this presentation, including female rig solution:

Simon MillsSimon Mills,, smills@slantsixgames.comsmills@slantsixgames.com

© Capcom Co., Ltd.© Capcom Co., Ltd.

mailto:bhanke@slantsixgames.com
mailto:info@slantsixgames.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

