
CUTTING THE PIPE
Achieving Sub-Second Iteration Times

Niklas FrykholmNikolaj Kledzik / Frans Enmark
Art Direction & Design

2011 © Nikolaj Kledzik / Frans Enmark

8Polygon – Verktygslåda

Inspiration LogotypBitsquid

THE ITERATION TREADMILL
Minutes (hours?) until a change can be seen in-game

There and back again

Make Change

Export

Compile Data

Reboot Game

Load Level

Find Entity

Check Result

WHY FASTER ITERATION TIMES?

• Productivity

Time lost waiting for builds

• Quality

More tweaking

Assets tested in-game on console

• Note: This talk is about optimizing pipeline latency not throughput

Time required to update a single dirty resource

HAMILTON’S GREAT ADVENTURE
50+ levels

KRATER WAR OF THE ROSES

RED FRONTIER THE SHOWDOWN EFFECT

AMBITIOUS GOAL
See change ”immediately” (<1 second)

NO CHEATING!
Target hardware + Target frame rate

30 Hz

WHAT ABOUT LIVE EDIT?
Do we even need a pipeline?

There and back again

Make Change

Export

Compile Data

Reboot Game

Load Level

Find Entity

Check Result

Change Model...
Change Material...
Change Texture...
Add Rigid Body...
Edit Script...

PROBLEMS WITH LIVE EDITING

• The game is not always the best editor

• Versioning is tricky if game data is a living binary image

Collaborative work and merging changes is also tricky

• Cross-platform? Editing on PS3? X360? iOS?

• Data formats suitable for editing do not have optimal runtime
performance

FAST GAMES

• Binary resources

• Load-in-place

• No seek times

FAST WORKFLOWS

• Short compile time

• Hot reload

• Immediate feedback

FAST ITERATIONS: THE BEST OF BOTH WORLDS

ATTACK STRATEGY
Compile as fast as possible and replace reboot with reload

There and back again

Make Change

Export

Compile Data

Reboot Game

Load Level

Find Entity

Check Result

ReloadSpeed this up

Replace
these

DIVIDE AND CONQUER

• Recompiling and reloading all data (>1 GB) can never be fast enough

• We must work in smaller chunks

Regard the game data as a collection of individual resources

where each resource can be compiled separately

and then reloaded while the game is running

INDIVIDUAL RESOURCES

• Identified by type + name

• Both are unique string identifiers (gets hashed)

The name comes from a path, but we treat it as an ID (only compare by equality)

type:
name:

source file:

texture
textures/vegetation/grass

textures/vegetation/grass.texture

COMPILING RESOURCES

• Each resource compiles to a
platform specific runtime optimized
binary blob

• Identified by name hash grass.texture

(in-game resource manager)

ff379215ff379215

(data compile)

LOADING RESOURCES

• Resources are grouped into
packages for loading

• Packages are streamed in by a
background thread

• During development, resources are
stored in individual files named by
the hash

• For final release, the files in a
package are bundled together for
linear loading

ff379215

edf123b2

2345e791

b3d42677

12302

ff379215 edf123b2

2345e791 b3d42677

12302

boss_level.package

RELOADING RESOURCES

• Running game listens on TCP/IP port

Messages are JSON structs

• Typical commands from our tools

Enable performance HUD

Show debug lines

Lua REPL (read-eval-print-loop)

Reload resource

• Also used for all our tool visualization

> reload texture vegetation/grass

> reload texture vegetation/grass

RELOADING RESOURCES (DETAILS)
• Load the new resource

• Notify game systems based on type

Pointer to old and new resource

• Game system decides what to do

Delete instances (sounds)

Stop and start instances (particles)

Keep instance, update it (textures)

• Destroy/unload the old resource

ff379215

ff379215

O
ff379215

ff379215

ff379215

ff379215

EXAMPLE: RESOURCE RELOADING

if (type == unit_type) {
	 for (unsigned j=0; j<app().worlds().size(); ++j)
	 	 app().worlds()[j].reload_units(old_resource, new_resource);
}

void World::reload_units(UnitResource *old_ur, UnitResource *new_ur)
{
	 for (unsigned i=0; i<_units.size(); ++i) {
	 	 if (_units[i]->resource() == old_ur)
	 	 	 _units[i]->reload(new_ur);
	 }
}

void Unit::reload(const UnitResource *ur)
{
	 Matrix4x4 m = _scene_graph.world(0);
	 destroy_objects();
	 _resource = ur;
	 create_objects(m);
}

PROBLEMATIC ISSUES

• Deploying data to console

• Handling big resources

• Resources that are slow to compile

• Reloading code

ISSUE: DEPLOY TO CONSOLE

• Deploying data to consoles can be
slow

File transfer programs not adapted for
sub-second iterations

• Solution: Run a file server on the PC
– consoles loads all files from there

Transparent file system backend

File Server

get <PATH> <data>

ISSUE: BIG RESOURCES

• Very big resources (>100 MB) can never be compiled & loaded quickly

• Find a suitable resource granularity

Don’t put all level geometry in a single file

Have geometry for entities in separate files

Let the level object reference the entities that it uses

ISSUE: SLOW RESOURCES

• Lengthy compiles make fast iterations impossible

Lightmaps, navmeshes, etc.

• Separate baking from compiling

Baking is always an explicit step: ”make lightmaps now” (editor button)

The baked data is saved in the source data and checked into repository

Then compiled as usual (from raw texture to platform compressed)

ISSUE: RELOADING CODE

• The trickiest resource to reload

• Four kinds of code

Shaders (Cg, HLSL)

Flow (visual scripting)

Lua

C++

• Flow & shaders treated as normal
resources

Just binary data

Physics Collision
egyptian arch

Touched Actor

Touching Actor

Touching Unit

Position

Normal

Start Touch
End Touch

Particle Effect
fx/fire

Unit

Position

Create
Destroy

Flow script

LIVE RELOADING LUA
Makes sure that when

reloading, changes are applied
to existing Actor class.

Actor = Actor or class()

function Actor:move(dt)
 self.pos = self.pos + dt
end

original version

Actor = Actor or class()

function Actor:move(dt)
 self.pos = self.pos + self.v * dt
end

update

Actor move
set_velocity

my_actor

self.pos = self.pos + dt

Actor move
set_velocity

my_actor

self.pos = self.pos + dt

self.pos = self.pos + self.v * dt

Without this, reloading would
create a new Actor class and
existing Actor objects would
not see the code changes.

RELOADING CODE: C++

• Tools support ”Restart Exe”

The exe is reloaded, but you are
still at the same location seeing
the same objects, just with new
engine code

State is held by tool

• Does not meet <1s goal, but
still very useful

Small exe size helps

FAST COMPILES

There and back again

Make Change

Export

Compile Data

Reload

Check Result

TIP: USE THE PROFILER, LUKE
Your tools want some of that performance junkie love too

INCREMENTAL COMPILE

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

• Find all source data modified since last compile

• Determine the runtime data that depends on those files

• Recompile the necessary parts

• Important that the process is rock solid

Trust is hard to gain and easy to lose

”It is safest to do a full recompile”

CHALLENGE: DEPENDENCIES

• base.shader_source includes common.shader_source

Needs recompile if common.shader_source changes

• How can we know that without reading every file?

• Solution: A compile database

Stores information from previous runs

Open at start, save updates at shutdown

• When a file is compiled, store its dependencies in the database

Determine them automatically by tracking open_file()

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

CHALLENGE: BINARY VERSIONS

• If the binary format for texture resources changes, every texture needs
to be recompiled

• Solution: Reuse the database:

Store the binary version of each compiled resource in the database

Check against current version in data compiler

Recompile if there is a mismatch

• We use the same code base (even the same exe) for the data compiler
and the runtime, so binary versions are always in sync

STILL LOTS OF OVERHEAD FOR COMPILING A SINGLE FILE

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

Touches disk, ~2 s

Walks entire source tree to check modification times
Touches disk, proportional to project size 5-20 s

Reading and saving database, ~1 s

Proportional to the number of modified files
Ok, this is necessary work that needs to be done

STARTUP & SHUTDOWN

• Several seconds are spent just booting and shutting
down the compiler process

• Solution: Reuse the process!

Run as server

Receive compile requests over TCP/IP

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

Compile
Server

result = success result = 	

failure
error = 	

Animation ”run” used by
	

 state ”run_state” not found

source = 	

 project
dest = 	

 project_win32
platform = 	

win32

SCAN SOURCE

• Slow: Checks mtime of every project file

• Fragile: Depends on dates

If a backup copy is retored we could have mtime(file) < mtime(dest)

Crash while writing dest is bad

Trust is important: We never want to force a full recompile

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

foreach (file in source)
	 dest = destination_file(file)
	 if mtime(file) > mtime(dest)
	 	 compile(file)

IDEA: EXPLICIT COMPILE LISTS
• Tool sends a list of the files that it wants recompiled

• Tool keeps track of the files that have changed

Texture editor knows all textures the user has changed

• Fast

• Fragile: doesn’t work outside tools

svn/git/hg update

texture edited in Photoshop

Lua files edited in text editor

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

SOLUTION: DIRECTORY WATCHER

• Do a complete scan when server starts

• After initial scan, use directory watching to detect changes

ReadDirectoryChangesW(...)

• No further scans needed

• Use database to avoid fragility

Store mtime from last successful compile in database

If mtime or file size differs during scan – recompile

If directory watcher notifies us of a change – recompile

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

DIRECTORY WATCHER RACE CONDITION
We don’t know how long it takes to be notified

1. File is changed

require ”stuff ”

function f()
 print(”f ”)
end

2. User presses compile
button

C

source = project
dest = project_win32
platform = win32

3. Request reaches
compiler server

4. Server is notified of
changed file

RACE CONDITION TRICK
Use temporary file as a ”fence”

1. File is changed

require ”stuff ”

function f()
 print(”f ”)
end

2. User presses compile
button

C

3. Request reaches
compiler server. Server

creates a new temporary
file

4. Server is notified of
changed file

5. Server is notified of the
new temporary file

source = project
dest = project_win32
platform = win32

DEPENDENCIES

• Since we don’t destroy the process, we can keep the
dependency database in-memory

Only needs to be read from disk when server starts

• We can save the database to disk as a background
process

When we ask for a recompile, we don’t have to wait for the
database to be saved

It is saved later when the compiler is idle

Start Exe

Scan Source

Dependencies

Recompile

Shutdown

FINAL PROCESS

• The only disk access when processing requests is:

Compiling the modified files

Creating the directory watcher ”fence” file

• Otherwise everything happens in memory

Start Exe

Start Watcher

Start Server

Find Modified

Dependencies

Read DB

Scan Source

Parse Request

Compile

Send Reply

Save DB

Shutdown

RESULTS

Project Size Zero Compile Min Change

Hamilton 7 200 files 20 ms 25 ms

Undisclosed 15 300 files 43 ms 49 ms

Test 100 000 files 322 ms 366 ms

Happy
Content
Creators

RESULTS

1 ms

10 ms

100 ms

1,000 ms

100 files 1,000 files 10,000 files 100,000 files

GENERAL RULES

• Think about resource granularity

Reasonably sized for individual compile/reload

• TCP/IP is your friend

Prefer to do things over the network to accessing disk

Run processes as servers to avoid boot times

• Use database + directory watcher to track file system state

Database can also cache other information between compiler runs

Keep in-memory, reflect to disk in background

QUESTIONS

niklasfrykholm

www.bitsquid.se

niklas.frykholm@bitsquid.se

Nikolaj Kledzik / Frans Enmark
Art Direction & Design

2011 © Nikolaj Kledzik / Frans Enmark

8Polygon – Verktygslåda

Inspiration Logotyp

