
DXT is NOT ENOUGH

Colt “MainRoach” McAnlis
Developer Advocate at Google

Gathered here today...

● Texture footprint matters for games

● Retail moving to 17GB of DVDs

● Not OK for digital distrib & consumers!

Quality

Size Decompression
Speed

The way it’s done

● Most people simply zip their DXT data

● In archive w/ other data

● Memcpy right to the GPU

Why do I care?

● You should not keep your full zip archive
in memory.

● You should only keep around what’s streamed

● Tough to bin-sort all your assets into
proper archives

● So instaed, we leave textures hyper
compressed.

IDtech5

● RAGE had different requirements

● Tons more texture data

● Stored textures as a hyper compressed

● Converted to DXT @ runtime

● 112 MP/sec on dual core

Down-sides

● Very processor intensive

● Introduces 2x noise

● DXT color quality is very low

Different Idea

● What if we post-compress the DXT data?

● No error introduced

● Can store in memory hyper compressed

Data set

● Random collection of images

● Some from games (source imgs)

● Some from public (lena)

● Some from img libraries(kodak)

● All numbers include DDS headers! (128b)

● All %s are amount of reduction

DXT

11 01 00 10

11 01 10 10

00 10 01 00

00 10 01 00

loColor : 5:6:5

hiColor : 5:6:5

DXT

● Orig 37mb

● Dxt1 – 7.63mb

● Dxt1 + zip – 4.82mb (36.83%)

● Dxt1 + zip (indv) – 5.1mb

Can we beat this?

All %s are amount of savings

Bag of tricks - lossless

● De-interleaving

● Huffman compression

● Delta encoding

● Codebooks

Back of tricks lossy

● Expanding blocks / ROI

De-interleaving

11 01 00 10

11 01 10 10

00 10 01 00

00 10 01 00

DXTi (De-interleaving)

● Dxt1 – 7.63mb

● Dxt1i – 7.63mb (0%)

● Dxt1i + zip– 4.33mb (43.25%)

All %s are amount of reduction

Huffman compression

● Dictionary system

● Creates a dictionary of input symbols

● Replaces symbols in stream with minimum
bit-codes (like Morse code)

● AAAABBC (56 bits)

● 0000 11 10 (8 bits)

DXTih (+ huffman)

● Dxt1 – 7.63mb

● Dxt1dih – 4.56mb (40.23%)

● Dxt1dih+zip – 4.27mb (44.04%)

16b colors, 8b sel

All %s are amount of reduction

Better selector selection.

http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/

http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/
http://www.sebbylive.com/projects/texture-compression/improving-dxt-compression-file-sizes/

Delta encoding

● Creates duplicate symbols for easier
compression

● 155,156,157,157,157,221,222,225

● 155,1,1,0,0,64,1,3

DXT1ihd (+ delta encoding)

● Dxt1 – 7.63mb

● Dxt1ihd – 4.48mb (41%)

● Dxt1ihd + zip – 4.17mb (45%)

All %s are amount of reduction

Code books

● Create codebook of colors (unique)

● Delta encode them

● In Block stream, store 256 bit index into
codebook

● Use sliding window approach to ensure
that you’ll always have a 256 bit index

● NOTE, makes codebook base bigger..

DXT1ihdc (+ code book)

● Dxt1 – 7.63mb

● Dxt1ihdc – 4.21mb (46%)

● Dxt1ihdc + zip – 3.87mb (49%)

All %s are amount of reduction

Expanding blocks

● Adjacent cells often share color profiles

● Use 8x8 cells

● 1 hi 1 lo color per 8x8

● 64 2b selectors

DXTihc8 (+ 8x8 blocks)

● Dxt1 – 7.36mb

● Dxt1ihc8 – 2.46mb (67.7%)

● Dxt1ihc8 + zip – 2.46mb (67.7%)

BOOM

All %s are amount of reduction

Timings

● Dxt1_ihdc8 –

● CS101 style huffman & delta encoding

●(ie not optimized at all)

● ~67.759% compression savings

● ~73.28 MP/sec

1.32 bpp!

YMMV

● Normal Textures - dxt1_ihdc8

● ~70.33% reduction

● AO textures – dxt1_ihdc16

● ~82.94% reduction

Big reveal

● Variable block (4-16)

● De interleaved, delta encoded, huffman

● ~80% reduction @ 93MP/s (diffuse texs)

0.8 bpp!

Bigger reveal

● CRUNCH codec

● 256mt/sec

● ~0.1 bpp

Take away

● Easy to get savings with simple
algorithms

● YMMV for texture types

● Spend time offline doing best
compression

THANK YOU!

Special thanks:
Rich Geldreich, John Brooks, Ken Adams

Colt “MainRoach” McAnlis | colton@google.com

