EMBRACING THE DARK ART OF MATHEMATICAL MODELING IN GAME AI

Dave Mark – Intrinsic Algorithm Kevin Dill – Lockheed Martin

Mathematical Modeling Can Be Easy!

- More than just a "bucket of floats"
- Yes, it is complex
- (But so is behavior!)
- Organized construction leads to understandable complexity
- Often, more art than science
- (But so is behavior!)

Mathematical Modeling Can Be Fun!!

Brenda G Brathwaite

All the fun of balancing is figuring out what numbers matter, what weight to give to them and the basic shape of the curve you're hoping for

Brenda G Brathwaite

Following

I love balancing games and trying diff formulas. ((If anyone followed my twitter feed before asking me on a date, I would never get a date).

Christopher Pratt @chrispratt24 @br Do you find it's heavy calculations or more trial and error?

Brenda G Brathwaite

@chrispratt24 It's determining the relationship of one number to another, and finding out which number rules them all. Something has to be..
** Retweeted by Dave Mark

Brenda G Brathwaite

🗲 🖌 Follow

LOCKHEED MARTIN

Following

5h

1-

@chrispratt24 ... the basis from which other numbers are balanced.

- Design Decision: "Enemies don't always fight to the death"
- Enemies can sometimes retreat
 - Flat % chance
 - Is random... therefore looks random
 - Not realistic
 - Situational random
 - Based on circumstances
 - Circumstances are flexible and dynamic

Know when to walk away... How many on my side are still fighting? 1.6 How many of my enemies are still fighting? LOCKHEED MARTIN

Know when to walk away... PercentChance = $(4 - \text{Ratio})^3 / (4^3)$

PercentChance = $(4 - \text{Ratio})^4 / (4^4)$

PercentChance = $(4 - 1.6)^4 / (4^4)$

PercentChance = 13%

How many on my side are still fighting?

How many of my enemies are still fighting?

1.4

PercentChance = $(4 - \text{Ratio})^4 / (4^4)$

PercentChance = $(4 - 1.4)^4 / (4^4)$

PercentChance = 18%

Know when to walk away... PercentChance = $(4 \times \text{Ratio})^4 / (4^4)$

A IGAME GUILD

PercentChance = ((MaxRatio – Ratio)^k × MaxPct)/(MaxRatio^k)

	MaxPct	k
In Forest	1.00	4
In Goat Field	0.75	6
In Village	0.50	8

Percent Chance that an Individual will Retreat

• Factors to Consider – Number of allies – Number of enemies – Proximity to Base - Strength of allies - Strength of enemies – My own health - Proximity of my leader

Types of Curves

2010 AI Summit Talk: Improving AI Decision Modeling Through Utility Theory

Multiple Factors – Multiple Curves

- Each decision factor can have its own mathematical model
- Each model is completely atomic
- Only the result is passed on farther into the process

Relevant Example

AIRLINE TRAFFIC MANAGER

Shopping for a Flight

6 Considerations

- Price
- Comfort
- Total Length of Itinerary
- Nearness to Preferred **Departure Time**
- On-time Rate
- Brand Loyalty

- Passenger Preference - [0..3]
- Itinerary Score
 - [-127..+127]
- Itinerary Rating = Sum (Pref. × Scores) "Neighted

$$Rating = \sum_{i=1}^{6} (Pref_i \times Score_i)$$

LOIGKHEED

We seem to have a difference of opinion...

Satisfaction	X	Preference	I	Score
50	X	1		50
50	X	3		150
50	X	0		0

We seem to have a difference of opinion...

Adding It All Up

Category	Preference	X	Satisfaction	=	Score
Price	3	x	50	=	150
Comfort	1	X	-30		-30
Duration	1	Х	80		80
Dep. Time	2	Х	25		50
On-Time %	0	х	-100	=	0
Loyalty	2	х	50	=	100
				Total:	350
A TGAME					4

LOCKHEED MARTIN

Intrinsic Algorithm

Adding It All Up

Category	Preference	X	Satisfaction		Score
Price	3	Х	-25	I	-75
Comfort	1	Х	40		40
Duration	1	Х	90		90
Dep. Time	2	X	25	—	50
On-Time %	0	х	200	Η	0
Loyalty	2	Х	-60	=	-120
Total: (–15)					

LOCKHEED MARTIN

Intrinsic Algorithm

Here a curve, there a curve...

How Satisfying is This?

Relative Price Satisfaction

How Satisfying is This?

Length of Trip (Compared to Best Possible)

Normalization, Normalization, Normalization!

- All preferences on the same scale (0..3)
- All satisfaction curves on the same scale (-127..+127)
- Because range is fixed
 - Endpoints have consistent meaning
 - Changes to "satisfaction" models happen *inside* each component
 - Comparisons between components can remain unchanged

"Compartmentalized Confidence"

How Satisfying is This?

Relative Price Satisfaction

Gimme whatcha got...

- Data flows through the model
- Treat each step like a black box
 - Define what the output means
 - Process inside the box to define that *meaning*
 - Use the output as if the *meaning* is intact

Percent Chance that an Individual will Retreat

PercentChance = ((MaxRatio – Ratio)^k × MaxPct)/(MaxRatio^k)

	2 MaxPct	k
In Forest	1.00	4
In Goat Field	0.75	6
In Village	0.50	8

PercentChance = ((MaxRatio – Ratio)^k × MaxPct)/(MaxRatio^k)

Percent Chance that an Individual will Retreat

Don't Mind Me... I'm Tweaking

Mathematical Topography

- Adding information together constructs a "landscape"
- Each component is separate

 Modeled individually
 Deforms the *total* landscape
- Visualize the total effect

Mathematical Topography is Not New

- Generating a "landscape"
- The Sims "Happyscape"
- "Hill-climbing" to select
- RTS influence maps

Modular Considerations

Guard Patrol Location

 Close to the castle
 Close to me
 Not close to other guards

A Mathematical Landscape

Modular Considerations

Guard Patrol Location

 Close to the castle
 Close to me
 Not close to other guards
 Close to civilians

Modular Considerations

- Guard Patrol Location
 - Close to the castle
 - Close to myself
 - Not close to guards
 - Close to civilians
 - Close to monsters

- Close to the castle
- Close to myself
- Close to guards
- Close to civilians
- Away from monste

Modular Considerations

- Monster Location
 - Away from the castle
 - Close to myself
 - Not close to other guards ×(-1)
 - Close to civilians

The Value of Consistency

The Value of Consistency

- If output values are consistent
 - They can be used in multiple places
 - They can be compared meaningfully
 - Scale of importance is the same
 - Bigger is better
 - Unified selection methods can be used

Picking a Winner

Highest score

- Always the "best" selection
- Always the same selection given criteria
- Random from top *n*
- Weighted random from top n
- Weighted random from all choices

Mathematical Modeling Takeaways

- Utility-based AI can handle large numbers of potential selections dynamically
- Consistent design patterns help define a coherent structure
- Craft "considerations" that handle a specific component of the decision process

Mathematical Modeling Takeaways

- It's more than a "bucket of floats"
- Select mathematical formulas to convert raw data into meaningful values
- Normalize!
 - "Black box" output is consistent
 - Use defined ranges & scales
 - Can be combined seamlessly with other black boxes

Questions!!

Dave Mark Intrinsic Algorithm LLC Dave@IntrinsicAlgorithm.com www.IntrinsicAlgorithm.com **IADaveMark on:** Yahoo – AIM – Skype – Twitter

Kevin Dill Lockheed Martin KDill4@gmail.com

