EMBRACING THE DARK ART OF MATHEMATICAL MODELING [N GAME A]

Dave Mark - Intrinsic Algorithm Kevin Dill - Lockheed Martin

A器

Mathematical Modeling Can Be Easy!

- More than just a "bucket of floats"
- Yes, it is complex
- (But so is behavior!)
- Organized construction leads to understandable complexity
- Often, more art than science
- (But so is behavior!)

A GUME

Mathematical Modeling Can Be Fun!!

Brenda G Brathwaite
Following
27
All the fun of balancing is figuring out what numbers matter, what weight to give to them and the basic shape of the curve you're hoping for

Following
Christopher Pratt @chrispratt24
@br Do you find it's heavy calculations or more trial and error?

28
Brenda G Brathwaite
@br
@chrispratt24 It's determining the relationship of one number to another, and finding out which number rules them all. Something has to be.. $t z$ Retweeted by Dave Mark
I love balancing games and trying diff formulas. ((If anyone followed my twitter feed before asking me on a date, I would never get a date).
@chrispratt24 ... the basis from which other numbers are balanced.

Intrinsic Algorithm

Know when to walk away...

- Design Decision:
"Enemies don't always fight to the death"
- Enemies can sometimes retreat
- Flat \% chance
- Is random... therefore looks random
- Not realistic
- Situational random
- Based on circumstances
- Circumstances are flexible and dynamic

LOGKHEAD MARTIN

Know when to walk away...

Know when to walk away...

How many on my side are still fighting?

How many of my enemies are still fighting?
A cưiid

Know when to walk away...

PercentChance $=(4-\text { Ratio })^{3} /\left(4^{3}\right)$

Alew

Know when to walk away...

PercentChance $=(4-\text { Ratio })^{4} /\left(4^{4}\right)$

PercentChance $=(4-1.6)^{4} /\left(4^{4}\right)$
PercentChance = 13\%

Know when to walk away...

GAME
GUILD

Know when to walk away...

How many on my side are still fighting?

How many of my enemies are still fighting?
A cuilid

Know when to walk away...

PercentChance $=(4-\text { Ratio })^{4} /\left(4^{4}\right)$

PercentChance $=(4-1.4)^{4} /\left(4^{4}\right)$
PercentChance = 18\%

Know when to walk away...

PercentChance $=(4 \times \text { Ratio })^{4} /\left(4^{4}\right)$

Alew

Know when to walk away...

Know when to walk away...

PercentChance =
((MaxRatio - Ratio) ${ }^{\mathrm{k}} \times$ MaxPct) / (MaxRatio ${ }^{\text {k })}$

	MaxPct	k
In Forest	1.00	4
In Goat Field	0.75	6
In Village	0.50	8

AICMIS

Know when to walk away...

Percent Chance that an Individual will Retreat

Know when to walk away...

- Factors to Consider
- Number of allies
- Number of enemies
- Proximity to Base
- Strength of allies
- Strength of enemies
- My own health
- Proximity of my leader

Know when to walk away...

Types of Curves

2010 AI Summit Talk: Improving AI Decision Modeling Through Utility Theory

Linear Threshold

Multiple Factors - Multiple Curves

- Each decision factor can have its own mathematical model
- Each model is completely atomic
- Only the result is passed on farther into the process

Relevant Example

Shopping for a Flight

- 6 Considerations
- Price
- Comfort
- Total Length of Itinerary
- Nearness to Preferred Departure Time
- On-time Rate
- Brand Loyalty
- Passenger Preference
- [0..3]
- Itinerary Score
- [-127..+127]
- Itinerary Rating = Sum (Pref. \times Scores)

We seem to have a difference of opinion...

Satisfaction	x	Preference	$=$	Score
50	x	1	$=$	50
50	x	3	$=$	150
50	x	0	$=$	0

We seem to have a difference of opinion...

Satisfaction	x	Preference	$=$	Score
-70	x	1	$=$	-70
-70	x	3	$=$	-210
-70	x	0	$=$	0

Adding It All Up

Category	Preference	x	Satisfaction	$=$	Score
Price	3	x	50	$=$	150
Comfort	1	x	-30	$=$	-30
Duration	1	x	80	$=$	80
Dep. Time	2	x	25	$=$	50
On-Time \%	0	x	-100	$=$	0
Loyalty	2	x	50	$=$	100

Agamid

Adding It All Up

Category	Preference	x	Satisfaction	$=$	Score
Price	3	x	-25	$=$	-75
Comfort	1	x	40	$=$	40
Duration	1	x	90	$=$	90
Dep. Time	2	x	25	$=$	50
On-Time \%	0	x	200	$=$	0
Loyalty	2	x	-60	$=$	-120
Total:					-15

Agamid

Here a curve, there a curve...

How Satisfying is This?

How Satisfying is This?

Normalization, Normalization, Normalization!

- All preferences on the same scale (0..3)
- All satisfaction curves on the same scale (-127..+127)
- Because range is fixed
- Endpoints have consistent meaning
- Changes to "satisfaction" models happen inside each component
- Comparisons between components can remain unchanged
"Compartmentalized Confidence"

How Satisfying is This?

Gimme whatcha got...

- Data flows through the model
- Treat each step like a black box
- Define what the output means
- Process inside the box to define that meaning
- Use the output as if the meaning is intact

Adjusting Curves with Curves

Percent Chance that an Individual will Retreat

Adjusting Curves with Curves

PercentChance =

((MaxRatio - Ratio) ${ }^{\mathrm{k}} \times$ MaxPct) / (MaxRatio $\left.{ }^{\mathrm{k}}\right)$

| In Forest ? | MaxPct | k |
| :--- | :---: | :---: | :---: |
| In Goat Field | 1.00 | 4 |
| In Village | 0.75 | 6 |

LOCKHEED MABTH

Adjusting Curves with Curves

PercentChance = ((MaxRatio - Ratio) ${ }^{\mathrm{k}} \times$ MaxPct) / (MaxRatio ${ }^{\text {k }}$)

Adjusting Curves with Curves

Percent Chance that an Individual will Retreat

Don't Mind Me... I'm Tweaking

Mathematical Topography

- Adding information together constructs a "landscape"
- Each component is separate
- Modeled individually
- Deforms the total landscape
- Visualize the total effect

LOCKHEED MABTH

Mathematical Topography is Not New

- Generating a "landscape"
- The Sims "Happyscape"
- "Hill-climbing" to select
- RTS influence maps

Modular Considerations

- Guard Patrol Location
- Close to the castle
- Close to me
- No: close to other guards

Alew
GUILD

4

A Mathematical Landscape

Modular Considerations

- Guard Patrol Location
- Close to the castle
- Close to me
- Not close to other guards
- Close to civilians

H

Modular Considerations

- Guard Patrol Location
- Close to the castle
- Close to myself to guards $x(-1)$
- Close to civilians
- Close to monsters
- Civilian Wander
- Close to the castle
- Close to myself
- Close to guards
- Close to civilians from monste

Modular Considerations

- Monster Location
- Away from the castle
- Close to myself
- Not close to other guards $x(-1)$
- Close to civilians

Alacarte

Castle Guards

Civilians

Forage
Monsters

Influence Map

The Value of Consistency

The Value of Consistency

- If output values are consistent
- They can be used in multiple places
- They can be compared meaningfully
- Scale of importance is the same
- Bigger is better
- Unified selection methods can be used

GUILD

Picking a Winner

- Highest score
- Always the "best" selection
- Always the same selection given criteria
- Random from top n
- Weighted random from top n
- Weighted random from all choices

Mathematical Modeling Takeaways

- Utility-based AI can handle large numbers of potential selections dynamically
- Consistent design patterns help define a coherent structure
- Craft "considerations" that handle a specific component of the decision process

Mathematical Modeling Takeaways

- It's more than a "bucket of floats"
- Select mathematical formulas to convert raw data into meaningful values
- Normalize!
- "Black box" output is consistent
- Use defined ranges \& scales
- Can be combined seamlessly with other black boxes

Questions!!

$\mathrm{A}^{\text {Comis }}$
GUILD

Dave Mark Intrinsic Algorithm LLC

Dave@IntrinsicAlgorithm.com www.IntrinsicAlgorithm.com

IADaveMark on:
Yahoo - AIM - Skype - Twitter

Kevin Dill Lockheed Martin

KDill4@gmail.com

