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A key takeaway for this talk is that geometry manipulation is 
no longer reserved for studio artists while producing a game. 
Geometry is generated and modified at runtime now, and the 
possibilities to explore this are wide open. There are good 
ways and bad ways to implement features in games that 
change the geometry of level and actor geometry. I want to 
introduce some good practices to game engine programmers 
working on these types of features, and perhaps to people 
who are looking to create their own geometry editors. 
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Those linear and indexed buffer representations are optimal 
for GPU operations (especially if optimally arranged for cache 
coherence, etc.), but not for general manipulation of 
geometry. 
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Monotone decomposition via plane sweep. 
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This is our focus. Simple models with at most two 
triangles/polygons touching on common edges. 
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The half edge structure we’ll talk about here enables many 
traversals that complete in linear time, based on the number 
of results retrieved. 
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Generalized non-manifold is the type of data structure used in 
computer aided design software. It completely separates 
geometry and topology, and is much more rigorous that what 
we need to be concerned with for games. It is also far more 
difficult to implement. The complete division between 
geometry and topology makes this quite non-intuitive. 
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The half edge only directly knows about its endpoint, but we’ll 
see that we can get to the start point in constant time. 
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The truth is, the face is on the left side only depending on 
viewpoint. If we look at the half edge from a point-of-view 
where the loop is traversed in a counterclockwise fashion, the 
face is on the left of the edge….while walking along the edge 
we would turn towards the left to see the face. If we looked at 
this same object from behind, the face would appear to be on 
the right. 
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We are focusing on the half edge, but typical implementations 
also define special face and vertex data structures. These 
enable additional traversals that are useful. 

 

The user data could be assigned to the edge, face, and/or 
vertex. It could store, for example, texture or UV mapping 
information. 

 

The marker is useful to aid in traversals. For example, if you 
want to find he constellation of faces around a given starting 
face, then traverse around the face’s loop.  For each vertex 
around the face, find the ring of faces around that vert, but 
skip any face that has a marker value of 1. For any as-yet-
unmarked face, add it to your list, then set marker = 1 for 
that face. By using the marker in this way, it indicates that 
you’ve already visited a face and so it is already in your 
output list. You can also use this for Boolean type searches. 
For example, if you want to find faces connected to vert1, but 
not to vert2, first find the ring of faces around vert2, and set 
marker to 1. Then find the ring of faces around vert1, skipping  
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any face with marker == 1. These are simple examples, but it 
should be clear that marker can enable rather complex selection 
logic. 
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Note that we add each new edge in constant time, so the net 
cost is O(n), where n is the number of edges in the loop.  
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IMPORTANT NOTE: If the face is part of a mesh, then 
edge1 is not necessarily the only edge whose endPt is 
vert1. Similarly, edge3 is not necessarily the only edge whose 
endPt is vert2. So, in the case of splitting a face in a 
mesh, it may be necessary to traverse the ring of edges 
around vert1 (and vert2) to find the edge whose endPt 
is vert1 (vert2) and whose face is the face of interest. 
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Caution! If the outer edges weren’t connected properly to 
begin with, will have to traverse edge rings (see following 
slides) for each boundary vertex to locate the boundary edges 
from the inside. This is more expensive. Best to make sure the 
data structure is properly created and maintained, in order to 
extract the best performance. 
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Supposed you needed to find all faces connected to a 
collection of vertices 

You can use the approach shown here to collect faces for each 
vertex 

Use marker values to avoid collecting a given face more than 
once 
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NOTE: It is straightforward to triangulate/cover an open loop 
that is on a plane. Or one that is approximately planar. If the 
edges on the loop are not all coplanar, then it is trickier. It 
may be possible to find some projection plane in which to 
perform the triangulation connectivity (a plane in which the 
projection of the edge loop is a simple polygon with all the 
original edges visible), but a different triangulation will result 
from different project plane choices. Ultimately, the triangles 
produced will not be coplanar if the edges were not coplanar, 
of course. 
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This grid is a portion of the representable floating point 
numbers. These two triangles are defined by corners that are 
representable points. Points not lying on the intersection of 
horizontal and vertical grid lines are not representable. Any 
unrepresentable number is approximated by a representable 
number. 
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This intersection point is not representable, so the floating 
point math system will approximate it with the nearest 
representable number coordinate. 
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Here, though the floating point grid is not shown, you will see 
that a single non-representable intersection point can lead to 
a chain of intersections that aren’t present in the original 
perfect geometry. 

72 



73 



74 



75 



76 



77 


