
1

2

A key takeaway for this talk is that geometry manipulation is
no longer reserved for studio artists while producing a game.
Geometry is generated and modified at runtime now, and the
possibilities to explore this are wide open. There are good
ways and bad ways to implement features in games that
change the geometry of level and actor geometry. I want to
introduce some good practices to game engine programmers
working on these types of features, and perhaps to people
who are looking to create their own geometry editors.

3

4

5

6

7

Those linear and indexed buffer representations are optimal
for GPU operations (especially if optimally arranged for cache
coherence, etc.), but not for general manipulation of
geometry.

8

9

10

Monotone decomposition via plane sweep.

11

12

13

14

15

16

17

18

19

This is our focus. Simple models with at most two
triangles/polygons touching on common edges.

20

The half edge structure we’ll talk about here enables many
traversals that complete in linear time, based on the number
of results retrieved.

21

Generalized non-manifold is the type of data structure used in
computer aided design software. It completely separates
geometry and topology, and is much more rigorous that what
we need to be concerned with for games. It is also far more
difficult to implement. The complete division between
geometry and topology makes this quite non-intuitive.

22

23

The half edge only directly knows about its endpoint, but we’ll
see that we can get to the start point in constant time.

24

25

26

27

The truth is, the face is on the left side only depending on
viewpoint. If we look at the half edge from a point-of-view
where the loop is traversed in a counterclockwise fashion, the
face is on the left of the edge….while walking along the edge
we would turn towards the left to see the face. If we looked at
this same object from behind, the face would appear to be on
the right.

28

29

30

We are focusing on the half edge, but typical implementations
also define special face and vertex data structures. These
enable additional traversals that are useful.

The user data could be assigned to the edge, face, and/or
vertex. It could store, for example, texture or UV mapping
information.

The marker is useful to aid in traversals. For example, if you
want to find he constellation of faces around a given starting
face, then traverse around the face’s loop. For each vertex
around the face, find the ring of faces around that vert, but
skip any face that has a marker value of 1. For any as-yet-
unmarked face, add it to your list, then set marker = 1 for
that face. By using the marker in this way, it indicates that
you’ve already visited a face and so it is already in your
output list. You can also use this for Boolean type searches.
For example, if you want to find faces connected to vert1, but
not to vert2, first find the ring of faces around vert2, and set
marker to 1. Then find the ring of faces around vert1, skipping

31

any face with marker == 1. These are simple examples, but it
should be clear that marker can enable rather complex selection
logic.

31

32

33

34

35

36

37

38

39

Note that we add each new edge in constant time, so the net
cost is O(n), where n is the number of edges in the loop.

40

IMPORTANT NOTE: If the face is part of a mesh, then
edge1 is not necessarily the only edge whose endPt is
vert1. Similarly, edge3 is not necessarily the only edge whose
endPt is vert2. So, in the case of splitting a face in a
mesh, it may be necessary to traverse the ring of edges
around vert1 (and vert2) to find the edge whose endPt
is vert1 (vert2) and whose face is the face of interest.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Caution! If the outer edges weren’t connected properly to
begin with, will have to traverse edge rings (see following
slides) for each boundary vertex to locate the boundary edges
from the inside. This is more expensive. Best to make sure the
data structure is properly created and maintained, in order to
extract the best performance.

59

60

61

Supposed you needed to find all faces connected to a
collection of vertices

You can use the approach shown here to collect faces for each
vertex

Use marker values to avoid collecting a given face more than
once

62

63

64

NOTE: It is straightforward to triangulate/cover an open loop
that is on a plane. Or one that is approximately planar. If the
edges on the loop are not all coplanar, then it is trickier. It
may be possible to find some projection plane in which to
perform the triangulation connectivity (a plane in which the
projection of the edge loop is a simple polygon with all the
original edges visible), but a different triangulation will result
from different project plane choices. Ultimately, the triangles
produced will not be coplanar if the edges were not coplanar,
of course.

65

66

This grid is a portion of the representable floating point
numbers. These two triangles are defined by corners that are
representable points. Points not lying on the intersection of
horizontal and vertical grid lines are not representable. Any
unrepresentable number is approximated by a representable
number.

67

This intersection point is not representable, so the floating
point math system will approximate it with the nearest
representable number coordinate.

68

69

70

71

Here, though the floating point grid is not shown, you will see
that a single non-representable intersection point can lead to
a chain of intersections that aren’t present in the original
perfect geometry.

72

73

74

75

76

77

