
1

Note that this is not a reason to not right unit tests, that’s still
a good idea, but there is a balance

Ultimately all of these things help to save money and time.

At EAC we automate everything, almost nothing that is seen
outside the dev team was created at someone’s desk. As a
courtesy we don’t check-in and then leave. Which leads to our
first problem. People want to know when can I go home after
my check-in? (We see few check-ins after 4:00pm) The
check-in to test result time has a big impact on when check-
ins stop happening. Seems like an easy problem to fix, just
keep things fast…

2

3

I am not bragging about these numbers, I don’t brag about
them, I complain about them.

These are just for the central managed teams at EAC in
Burnaby. Volumes/time differ in other parts of the company.
In general, ours are actually pretty good as we iterate on the
same titles year after year, so we tend to invest a lot in our
tools and processes.

4

Best case = one machine that does all automation processes
(usually not practical)
Requires: Few daily check-ins, number of check-ins <
(timeworkday/timeresult duration), Few builds (Configs/SKUs/
platforms), Few tests

1st plan is to use faster servers to offset the growth. However,
this approach gets prohibitively expensive as you grow.

5

Serial: Most efficient use of hardware (should always be busy)
and less hardware required but slow
Parallel: Potentially less efficient use of hardware and more
potentially required (Test environments may be cheaper than
build environments) but process should complete faster

At this point, we highly parallelized the system and we’ve
reduced the check-in to result time. Plus we’ve significantly
increased the number of iterations that we can do in a day.

6

Doing something simple like separating out the tests into its
process/environment has a big impact.
This is also a good split point because builds and tests often
have a 1 to many relationship. So this split enables the tests
to scale without any deeper dependency on the builds than
that they exist.

Parallelization is obvious, so why am I even presenting…
because parallelization is expensive, in this example we now
need 4 times the hardware

7

8

Also, consider the overall support cost to all groups involved
such as IT: Physical repair, removal / install, software installs
(OS, compilers and tools)

9

In case you aren’t familiar with it…

It’s using software to simulate a physical device. In this
example a piece of software known as a hypervisor is installed
on the bare metal (or in an existing OS) and the hypervisor
simulates the existence of a new machine that can have a
different hardware configuration (to some limits) and its own
distinct OS.

It’s particularly useful for scaling, since the only limiting factor
is the resources afforded by the actual hardware.

There also really handy for encapsulating environments. You
may not need to run 4 OSs at once, but for testing, you may
need quick access to 4 differently configured environments,
with virtualization you can do that all on the same box.

10

In the old days CPU was our biggest problem. When we want it built faster, we put faster
CPUs in the machines. Some parts of the company continue to do this, but our server farm
had 150 machines, its an expensive investment to keep things this as fast as possible. So we
revised our build system and moved to grid based build. As a result the CPU speed is
relatively less important as it is now split over many more machiens. We also adapted our
compression and packaging step to leverage the grid.

Many of the other steps are serial though, on a build machine, this means that a 2 core
machine performs almost as well as a 4+ core machine. For developers though we still want
to have as many cores available so that they can still comfortably use their computer while
compiling.

The next biggest bottleneck is local disk. Historically we have mitigated this by using 15,000
RPM drives (and have been looking at SSDs). Unfortunately they are often quite small
(160GB) so its very difficult to use the same build machine for more than game. Developers
don’t’ get 15k drives/SSDs but they are less impacted as they rarely need to package, create
disks, or publish.

Interesting note: We’ve found we actually decrease build times up to 10% but syncing into a
compressed folder. The processor is fast enough that the compressed folder doesn’t appear
to add any overhead during the syncing step, but the compressed folders require less disk
reads so we see improved performance on SLN generation and build times.

Virtualization is not a silver bullet, you need to decide if virtualization fits for you. In our case
we started by analysis of our automated processes. The discoveries made us realize that our
hardware was under utilized. This was intentional, as mentioned we are obsessed with speed,
so we want to have things leap into action as soon as there is new work.

This made virtualization a great option for us. We had spare capacity available for other
processes. Note that this works best if you can load balance things so that they aren’t all
consuming all of the same resources at the same time. Virtualization may still be valuable for
you even if you don’t have much spare capacity.

11

Virtualization allows us to avoid committing fully one way or
another. We still have confines but it’s a range instead of a
point. You choose where you are on the curve.

With the same set of hardware virtualization may take you
even further, because you are you can share resources. As
long as they aren’t over allocated it’s like you have machines
that you didn’t pay for.

12

How many times have you heard (or said) “And we’ll need all
of automation for the new branch”. We used to dread those
words. Not anymore though.

This ability to scale performance and the ability to encapsulate
environments allows us to handle large rapid growth. We can
adapt to most large changes, and if they become permanent
that’s when we can make the case to buy more hardware to
reduce to durations again.

The major benefit of virtualization is that standing up new
hardware means slowing things down a little rather than
buying new hardware, which is especially useful for temporary
changes (demo/PR/conference branches). Example, we can
have 30 fast machines or 60 slows ones and we can switch
between those choices very quickly.

13

So now we had a dial we could turn to adjust things, but could
we make them faster?

Earlier we introduced these new steps to enable
parallelization, publish and copy. As we’ve seen that was a
good move, but it did potentially slow things down. I haven’t
mentioned yet how much time they added. That’s because we
don’t actually have them in our process anymore, or at least
we don’t pay a time penalty for them anymore.

14

By just having the all of the data live on the network in the
first place we avoid needing to copy it around. Granted this
requires a storage area network and a revised infrastructure
that allows this.

This is not technically streaming though it’s helpful to think of
it that way, but the point is true the data all resides on the
network.

Note: that combined with streaming to the console we were
able to eliminate all copying from our automation pipeline

15

The SAN or filer, is basically a giant collection or disks. We can carve off virtual
disks, called LUNs from the collection of storage. Those LUNs can then be assigned
to any machines on the network. The machine then mounts that disk as a local
disk using the iSCSI protocol (supported by all major OSs). To be clear, to the OS
this disk is indistinguishable from a physical disk inside the device, this isn’t just a
mapped network drive.

That LUN clone will contain the entire source tree and everything that is build when
the build machines does its thing. Once the build is ready to move on the build
machine triggers the filer to take a ‘snapshot’ of that volume. The snapshot then
becomes a point-in-time copy of the LUN as it was at that particular moment.
What’s interesting here is that the snapshot is instantaneous and, at least initially,
takes up no space. This is because its really an indirection layer that the filer is
now managing on that LUN. All news changes to the LUN will be written
somewhere else and the filer will resolve all look-ups appropriately whether a
machine is looking at the LUN of the snapshot.

In order to preserve the integrity of the snapshot data, snapshots can’t actually be
used directly. A snapshot can however be cloned and that clone is available for
use. Same as a snapshot, a clone point in time copy of the original LUN except
that the clone is writable. Any changes made to the clone start to incur storage
penalties.

Also the same as a snapshot a clone has no creation time overhead because its just
an indirection layer that the filer is handling for us. What is tricky though is that
each build is now its own drive which needs to be dynamically mounted and
unmounted from the test environment. This can be a bit tricky but suffice it to say
that automating diskpart isn’t too difficult and you need to disable system restore
on the test machines.

Its also important to note that you can have as many clones as your system has
space for.

16

The filer is able to keep track of all the changes as they are
coming in so it’s able to redirect them to the appropriate
places

17

Build Process happens as usual, but instead of a publish of the build,
we create a snapshot, which is just a call to a script, which
established an RSH connection to the filer and runs the snapshot
create command.

The test process runs a script which asks for the list of snapshots on
the filer. Using that it detects the new snapshot instead of a
published build, the test machine the runs a script which makes an
RSH connection to the filer to run the clone creation command using
the snapshot as a parameter it also configures the clone so that the
test machine can use it (attach)

The iSCSI connection on the machine will automatically recognize
the clone and attach it, a script is used to have diskpart mount the
clone into the file system

The tests are run as usual. Once the test is over, another script has
diskpart detach the clone from the machine, then another script
established an RSH connection to the filer and runs the clone
destroy command.

Sounds easy but tracking the LUNs, snapshots and clones can be a
pain.

18

This is the device that we use to run 140 servers, we tested
(and prototyped) with many smaller devices and had success.

Our choice was based on the level of IO operations per second
that the device that can handle and the storage capacity that
we would get. We tried to find a device where all of our
processes could hit their peak IO load simultaneously without
crashing the device. We profiled our process and determined
that our peak IO writes were about 350/second. With an
estimated max of 70,000IOPS (we couldn’t generate enough
load to verify it). 70000/350 = 200 which was more than
enough machines. If we take the 200 x 190GB disc space
(150 source + 40 OS) we use up about 40TB of storage which
also fits into the spec of the filer.

We actually saw performance increase just by moving the data
off of local disk and on to the network, our new blades don’t
even have local disks

19

Since a clone is technically a LUN in the volume, any snapshot
will contain clones as well. In the default filer configuration,
creating a snapshot while a clone is alive will create a
dependency on the clone. This creates a forwards dependency
on snapshots. Snapshots with dependencies can’t be deleted.
However, as long as at some point a snapshot is taken while
no clones are active (say first thing in the morning, or after
any period where the tests finish before the next build) this
dependency free snapshot will be created and cleaning can
occur from that snapshot backwards. Alternatively, (took us
six months to try) there is a poorly named/documented option
where the volume can be configured so that snapshots do not
contain clones and this dependency is broken.

As mentioned snapshots are dependant on clones, so you’ve
got to ensure your clones are deleted once you are done with
them. Forgetting to do that will eventually cause the volume
to run out of space and everything to stop (potentially
catastrophically depending on your configuration). This
situation can’t easily be avoided. To mitigate it, at the end of
the process we auto-deleted the clone, and at the beginning
we try to delete the previous clone in case it snuck by.

20

There may be many LUNs in a volume, so how do you know
which one is useful?

Since the snapshot contains the name of the LUN, we know
just by the name of the available snapshot which the useful
LUN contained within. The clone name builds onto to the
same naming scheme so that we can identify the matching
snapshot if a clone doesn’t get cleaned up.

Would definitely recommend building a separate system to
manage these things, as named LUNs is a nuisance on the
administration side.

21

I can’t stress enough that System Restore will mess up
everything. Windows does not like volumes to be attached
and detached and attached and detached over and over again.
What’s worse is that it will cause sporadic issues which are
surprisingly hard to debug.

22

The blades should be able to handle 5 VMs of the current spec
that we are using. By using 3 we’ve allowed ourselves room
to either add more VMs or increase the performance.

The old desktops for the test machines, are not ideal ;), and
we have a current project to migrate them to blades, but since
they are really just intended to provide a isolated test
environment they don’t need to be able to do anything but
provide a stable windows host for our test automation
platform.

23

With the money that we didn’t spend on replacing 80 old
blades we can easily buy the filer, as well we reduce our space
usage in the data center as well as our carbon footprint. If we
were doing this again we would probably have taken
measurements of electrical draw, etc on the data center, as we
likely have significant monthly savings by not having to
power/cool those old blades as well.

24

Greater Parallelization: basically we want to move the sync drive to
its on LUN/VM and make clones of that for building, and then use
clones of clones for the testing, this should allow us to reduce disc
space use, and reduce our VM/project creation time

Elasticity: currently our VMs are created manually and are static, we
want to move to dynamic VM creation, were need build/test
requirements can be added and VMs are automatically created to
adjust for them

Pre check-in verification: this is the ultimate situation, every
changelist is checked individually. Last time we tried we hit massive
scaling problems, but we hadn’t mastered all of the dynamic
creation and when we using an array of physical machines. If we
can work out the ability to dynamically create and destroy VMs as
needed we should be able to take another stab at this.

Snapshots for SEs: there is no reason that a developer couldn’t map
a clone to their local machine. This would be great for debugging as
the clone has both the build and the source tree, can you can
basically get access to everything needed for debugging without
having to change your current workspace

25

26

