
So this talk is the distillation of 10 years of managing varying
size teams in a whole variety of different situations, including
working with teams across and on other continents. Hopefully
I’m not going to ramble too much, but it’s packed with
information. Ideally, at the end of it, I’ll have given you a
bunch of tools for your toolkit, and some concrete scenarios
you will most likely come across while shipping a game, with
solid ideas on how to conquer them.

You may, however, be wondering why you should listen to an
Engineer about Production Methodology. (Hint: I’m weird, and don’t pigeonhole

well).

1

So why would you want to listen to me about Producing?

Well, I’ve shipped a lot of both consumer and games software
over the years.

If you’ve heard of me, it’s because you were a reader of Your
Sinclair magazine at one point in time (cue embarrassing
caricature), where I had a monthly column for about a year
when I was 17. Or, you’ve heard of the SAM Coupe – a home
computer that nearly no-one had, where I was pretty well
known and worked on ports of Prince of Persia and Lemmings.

Spin forward a few years omitting a lot of stuff, and I was at
Sierra as a Lead working on Generations Family Tree – yes, we
had about 50 CDs in each box! – and shipped a LOT of SKUs –
120 or so to be precise over 3 years. I also ran the Photo Lab
project which shipped in Print Artist and other Sierra apps.

After Sierra collapsed, I worked on scientific instruments for a

2

while, and then dived back into the games industry in 2005 to join
Surreal Software, where I was Lead Tools/Engine Programmer for
Suffering: Ties That Bind, helped out with Localization for the
Russian version, and then moved onto This Is Vegas, where I was
Lead Tools, then Lead Gameplay Programmer, then one of the
Principle Technology Engineers on the engine team.

I ended up leaving because … well… I was engaged to the
programming producer and it’s weird to be in that kind of work
relationship when you’re going home together at night, so she gave
me an ultimatum

Cue X-Ray Kid Studios, where I was Director of Engineering, and
also Business Development Manager. After working on game designs
for about 18 games, and pitching to several large companies, I
ended up leaving (we ran out of money). X-Ray Kid are still going,
and do some awesome work – check them out, they’re good folks
(http://www.x-raykid.com).

So now I’m in Xbox – well, ATG, which covers all of Microsoft’s
Game Technology initiatives, where I make game developers’ lives
better.

(see also: http://www.linkedin.com/in/fleetingshadow ,
http://accidentalscientist.com if you want to know more… older stuff
- still somewhat relevant - is on http://simoncooke.com)

2

Here’s what you think you do… I think you’ll agree it’s pretty
accurate in a vague kind of way. It feels about right. (Even
though it’s a bit handwavy)

3

Here’s what everyone else on the team might think you do,
especially if they’ve had a bad producer in the past (they do
exist! And people have been burned by them!), or if you’re
dealing with a smaller company where the founders had to do
everything at one point or another, and can’t figure out why
you’re there.

(The answer of course is that it’s not a small company any
more, and you’re picking up a LOT of work they used to do, so
that they can focus on keeping the company afloat).

4

You can’t fix this. It’s impossible. I’ve seen it tried over
and over again.

5

Only kidding!

6

All of these are things you do every day that are hard to stick
your finger on and say “here! Look! I did THIS!”:

Moving roadblocks, making sure the path ahead is clear,
compromising on everything to make sure you hit the usually
immovable schedule, fielding weird requests from execs and
publishers alike, and generally, trying to get everyone through
it all unscathed. It’s a lot of stuff.

The annoying thing is… say you’re sheltering the team from
randomization – you’ll bat away maybe 1000 randomizations
and weird requests…. but you let through 3 of them. That’s a
pretty great score, all told, but the team never sees the 1000
things you moved out of the way for them – they only see the
three you couldn’t. And they think “Oh my god, you let three
through!”. This is horribly unfair, and a hard perception to
change. And you have to let some through, or else the people
pushing on you will start to see you as an obstacle rather than
a team player…

7

This, by the way, is why I always – always – seek out the
producers on a project when I join a new company. I know
that they will make my life easier, my teeth whiter, and my job
a lot happier to show up for every morning. And how do I
know this? Because I pay attention.

(My wife Darci Morales – an awesome producer
http://www.linkedin.com/in/darcimorales – wrote this slide.
It’s true).

One of the best producers I’ve ever known – Steve Freeman
(ex-Sierra - http://www.linkedin.com/in/stevenjfreeman) –
used to describe his job as one that if everything was 100%
on track and going smoothly, you should be able to walk into
his office and find his feet up on his desk, a cup of coffee in
his hand, and a video game running on his computer. Because
it’s only when things aren’t going smoothly, and things that
are on fire, that you would ever see anything else.

(With this explanation, he dismisses and handwaves away the

8

fact that it’s a LOT of work and upkeep to keep things in this state…
but to other people, that’s what it looks like).

8

You can change people’s perceptions, and pretty much every
problem you come across is going to be one of
Communication, in some form or another. So here’s some
things to throw into your Producer toolbag to help you along
the way…

9

Communication is pretty much everything.

Rapport:

You can build rapport by mirroring body language -
http://en.wikipedia.org/wiki/Rapport . Most people do this
automatically, but if you’re feeling put-upon or threatened,
you might find yourself not doing it. The trick is, force
yourself. If they shift position, shift to match a few seconds
later. But be subtle about it. Very quickly, you’ll be disarming
them, and the conversation will flow much better.

Match Styles:

People have a variety of different communications styles –
some are direct (“Be brief, be bright, be gone”), some value
the building of a relationship via conversation as important as
the conversation itself. Some people are linear thinkers, others
bounce around from A to Q to D to Z. Figure out the
communication style of the person you’re talking to - try to
match your style to theirs. It’ll make things smoother.

10

Keep it Crisp:

Assume that no-one ever reads more than the first paragraph of
your emails. Front-load any important information there, or people
won’t read it.

Be Transparent:

It’s hard to argue with a decision when people can see the
conflicting factors you had to balance. They might disagree with the
decision, but they’ll be less likely to mess with it when they see why
that particular compromise was made.

Don’t be Mysterious:

The worst thing you can do is send off a meeting request without
explaining why – it just makes people fear you. Worst example of
this I’ve experienced was a Studio Head sending me an email saying
“Meet me in my office at 11am tomorrow”. He just wanted a chat. I
thought I was going to be fired…

10

If there’s one thing I can encourage you to know and take to
heart, it’s that schedules are living documents. They’re not
made to be written, and then adhered to unthinkingly.

No, seriously, you CAN change the schedule, and you should,
regularly – or it’ll be totally wrong and out of date. No-one has
a crystal ball; at the beginning of a project, you’ll know
nothing about how it’s going to turn out. Near the end? You’ll
know a lot more. Planning should match this - sticking to a
bad schedule will cause huge issues. And if you have to make
changes, you can even go to publishing/execs and offer them
options, if you know what to do to switch it up.

People are very consistently wrong in their estimates, to the
point where you can look at how long someone says it’ll take
to do something vs. how long they actually take, and calculate
a fudge factor for the task.

But don’t tell them what that fudge factor is… all this will do is
futz with their estimates, and make them wrong again. Just

11

collect the data, and work it into a schedule you keep in private.
You’ll find that schedule gets more and more accurate as time goes
on, and you have more data to work with.

(SCRUM is horrible for this; depending on how you implement it,
you’ll lose that data… it also seems to encourage poor estimation
up-front, by requiring split-second decisions on how long a task
might take).

11

Everyone’s in their own little hole, working on their own thing.
You own the big picture, so you get to break it out and figure
out the knock on effects. A programmer checking in a new
feature “just because” at the end of a project has a knock on
effect on all other departments – whether they think it will or
not. You need to be figuring out the impacts.

Cert always takes 2 weeks. Most people fail at least once,
every time. This means 4 weeks minimum. Just in case you
fail twice, schedule 6 weeks for Cert.

Fix problems while they’re small. ALWAYS. Don’t put it off –
they just snowball and get bigger.

12

No such thing as stupid question – just bruised egos and
feeling stupid.

Get over that it’s pointless.

The best teams do this a lot in EVERY discipline. Collaboration
is better than someone grinding their gears.

You hire specialized people for a reason – so that they know
their stuff. If you ask questions, you’ll learn more, and be able
to ask better more intelligent questions. And experts love to
talk about what they know.

If you don’t, you’ll just hit more and more problems.

13

Trust is another word for credibility.

Can’t always be honest with the team about everything –
information overload.

Scenario: Someone from team comes up and asks you a
question about layoffs.

You know who is, and what’s coming down the line. You can’t
be completely honest about it – because you need to protect
the project. If in doubt, say you don’t know or can’t talk
about it – delicately. Discretion!

14

Near the end of projects in particular, you’ll have people
coming to you a lot, giving you information in private.

If this is people bitching about others on the team, trust that
they’re being honest, but they may be over-inflating the
problem (or misidentifying it). VERIFY first, and try to find a
win-win solution for everyone – never go off half-cocked and
shoot the person who is being blamed without looking into it.

Similarly, you’ll probably be privy to a lot of other kinds of
information (people wanting to leave, interpersonal issues
etc). Never break that confidence – you can provide
information regarding it to others to affect change, but do it in
a way that doesn’t identify the confidant – or people will very
quickly not talk to you about important things ever again.

If you don’t give second chances, we have a name for what
you are – a psychopath. Everyone makes mistakes, and
EVERYONE in the moment tries to do the best they possibly
can in the situation they’re in. Occasionally they get it wrong.

15

Everybody does it. So give second chances – people learn from
mistakes, and improve. Consider it an investment in the future.

Credit where it’s due: Always give credit for things, and always
credit it to the people who did the work. This reflects well on them,
and on you. If you steal credit – or people in the trenches never get
it for their work, it’ll go sour very quickly, and people will hate you.

15

One guy on a team I ran was awesome at writing clean code. I
put him in for a very high score on that in his review, and it
was knocked back to me, with a claim that he wrote the most
buggy code on the team. I went through every bug in the
database with my manager, and showed exactly what each
one was, and what happened. None of them were caused by
his code. The only way I could do this was because I always
paid very close care and attention to what was going on with
my team.

Also, most people expect work to progress steadily on a
project, from beginning to end, in a straight line. This is false;
effort expended is sinusoidal, with people crunching, working
hard for bursts, and then relaxing. And especially in
programming, tasks rarely close out until they’re completely
finished. So you see very little happening at first, and then a
huge rush at the end as things come online. This is normal –
but it scares execs.

One of the ways Unreal has done really well in the market is

16

by allowing the art team to rush ahead of programming and show
continual progress on the project. This is great – until you’re ¾ of
the way through the project, and all of a sudden, you start slowing
down as the art changes become smaller, and programming has to
catch up. Still, it’s useful – because otherwise you have to explain
the way projects work to business folks who might not agree…

The guy who shows up at 6am and leaves at 6pm might be resented
by the other guys who show up at 10am and leave at 9pm. But that
6am guy is doing more work, and crunching harder – they’re just on
a different schedule and never see it. Watch for this kind of thing
and counter it.

16

This is the biggest pile of bullshit I’ve ever heard. And okay, so
maybe that “not sharing toys as children” comment goes a bit
far… but still

Friends pull together for one another. Why wouldn’t you be
friends with the people you work with? The only reason I’ve
ever been able to come up with is to protect yourself from
having to make hard decisions which could hurt your
relationship with your friend.

The solution to this is simple. Set the tone of your
conversation at the start.

And just because you want to be friends with everyone on the
team, doesn’t mean that everyone will be your friend. Your
relationships with people might suffer because of your
responsibilities to your position.

17

I’ll come back to this one in a bit. But an ounce of psychology
will get you VERY VERY FAR in this industry. Especially if
you’re willing to play staff shrink.

Oh, and strangers in this context = anyone who isn’t a close
friend, especially during crunch. When people are under
pressure, they retreat to their safe group of compadres.
Everyone else can and may get thrown under the bus as a
result. Watch for it.

And our firmware doesn’t make sense. It was designed for
tribal villages and groups of apes running around in forests
millenia ago. But if you know where the holes are, you can
plan for it.

18

Here’s a few things you’ll see working on small teams…

19

This is all the things that, at varying points during a project,
you as a producer may need to juggle. Scary, huh?

20

Let’s break down the tensions you’ll see on any given team…

Here’s the external ones – the ones you generally don’t have
much sway over.

Except you do! These are business relationships, which
means you can and should negotiate with them! It’s just a
different relationship than the one you’ll have with your team.
Treat them as customers/investors, and you’ll have a much
better time of things. And work collaboratively - they want to
succeed as much as you do.

21

You can ship a 65% complete business or marketing plan and
still succeed. You can’t ship a 90% complete game – it doesn’t
run! So you may need to educate business folks on this – if
you don’t, you’ll just be left scratching your head at some of
the weird requests you get and start flipping the bozo bit on
them. They’re not – they just do radically different things to
you.

No imaginations – hard data rules. Business runs on hard
data. So be ready to paint pictures, show demo’s, storytell,
and more to get your point across and build consensus.
Expecting them to fill in the blanks won’t work.

No-one knows = minimize risk, and stick to what works…

What we do know:

• Franchises sell – by about the 3rd one in the cycle, user
awareness is there to build a snowballing following.

• Multiplayer appears to increase games sales – possibly by
cutting off the used game market at its knees if your friend

22

wants to play with you

• There’s more… talk to your business folks, listen closely, and see
what you can do if it makes sense for your game. But ask them
for the data so you can verify it yourself.

Marketing – they’re your friends, seriously. But you can only do it if
you collaborate closely with them, bring them in early, and
recognize that they have to sell the game to various people,
including retailers, distributors, and so on – not just end users (who
are your focus). Build a good relationship, collaborate, challenge
them where necessary, and make them a part of your team –
remember, their budget is probably at least as large as yours for
building the entire game. It doesn’t have to go poorly.

22

You’re in the middle, and you act as the hub for all the teams.

Of course, they’re all talking to each other anyway.

Design wants an environment you can enter a building in, with
interactive objects inside.

Art says we don’t have the tech to do that for this game. Talk
to programming.

Programming says oh, but we do!

Art says Argh! No, we don’t!

… all of this is just a communications issue.

The problem is that any demand from any other team is seen
as adding more work. Helping other teams is seen as adding
more work. ALL TENSIONS are caused – in one way or
another - by some other team not thinking carefully, and
accidentally (or inconsiderately) adding more work for other

23

teams. If you can insert yourself into this mix, and balance requests
and regulate how this happens without stemming impromptu
collaborations between teams, you’re ahead of the game.

23

Some other things you’ll see:

Programmers have to say NO a lot. They’re the guardians of
consistency and coherency, and have to make lots of things
work together, which is harder than making them work at all.
So we get used to saying No early – and forcefully – to keep
things on track. Except eventually, we start doing this
automatically and that’s bad.

Design often provide a very fuzzy up front design, and want to
sharpen it by iterating. But if the initial design is too fuzzy,
there’s nothing concrete there to iterate on. This can be very
frustrating for programmers and others. The best designers
I’ve seen know how to concretely and completely specify at
least v1 of a game design/feature before throwing it over the
wall. This gets harder if you’re running fast trying to keep up
with pressure from the schedule.

Art – everyone can see it, so everyone has an opinion. Even if
that opinion is “Those pants look assy”. Make sure any art

24

feedback is appropriate, well thought out, and has more depth to it
than just personal taste.

QA is always hated – which is sad, because they should be your
best friends. They’re there to make YOU look good.

24

What happens if you grow? From maybe 40 people to 120?

25

Okay, now you’re screwed, because you’re going to begin to
run up again Dunbar’s number.

http://en.wikipedia.org/wiki/Dunbar's_number

It’s the number of people who you can know in a given
context and consider to be “friendly” rather than strangers or
an enemy. And it’s built into our brains – it’s a function of
cortex size in primates.

The popular science version of this is 150 people, but that’s
wrong – because that’s for situations where your survival
depends on other people. The actual figure you should be
using for companies and teams is about 80.

Different people have different capacities; from experience I
can tell you from watching who I knew while our team grew
on This Is Vegas that mine tops out at about 98 people (I
made it my mission to know everyone). My wife’s? I’ve not

26

seen it top out yet – she goes to at least 128.

26

Unfortunately, this can cause lots of problems. The only way
around this is to break teams into smaller groups, with
structured communications between them, and processes in
place to lessen its effect.

27

Teams are weird… here’s how they work.

1 person – not a team. Just a solo rogue agent.

2 people – they will never agree (usually), or they’ll work well
together, but it’ll require a huge emotional/energy
commitment which limits productivity.

3 people – that’s one solo rogue agent, and two people who
override them and agree totally. (This is why the military
sends people out in groups of 3 on missions – two snipers to
hit the target, and one whose job is solely to watch their
backs and make sure they’re not discovered).

4 people – that’s two opposing groups of two.

Once you hit 5 people, things start motoring – now you
actually have a team dynamic. This works great until about 10
people, and then things rapidly tail off until you hit 14.

No-one know why 14 is a bad number, but you end up with
people who just plain don’t agree on anything, and don’t work

28

together well at all. It’s actively detrimental. And then it crawls back
up. It’s the uncanny valley for team sizes. Once you get past this
number, it’s probably because you’ve split the group into multiple
teams.

(Brook’s Law may possibly account for this - # of communciation
pathways = n(n − 1) / 2, where n is the number of people).

They figured this one out by watching groups of people playing
MMOs – specifically, Ultima Online.

Note: these figures aren’t hard and fast rules – they’re kind of fuzzy,
and your mileage may vary.

Note: before putting presenting this talk, I knew that 8 was also a
bad number in some circumstances, but couldn’t find data to back
that up. Now I have:
http://www.santafe.edu/media/workingpapers/08-12-055.pdf . King
Charles I’s committee of state had 8 members. They didn’t get
anything done. 8 is a bad number for a mix of decision makers who
aren’t necessarily collaborating, and have equal stake. That’s one to
avoid for meetings.

http://en.wikipedia.org/wiki/The_Mythical_Man-Month

http://www.lifewithalacrity.com/2004/03/the_dunbar_numb.html

http://www.santafe.edu/media/workingpapers/08-12-055.pdf -
Parkinson’s Law Quantified: Three Investigations on Bureaucratic
Inefficiency; Peter Klimek, Rudolf Hanel, Stefan Thurner

28

While we’re on the topic of random numbers affecting
communication… So this guy Professor Thomas Allen did a
study at MIT on engineers shows a reduction in
communication with distance. And it’s not helped by email,
text messages, Facebook or anything else – with a few
exceptions, you want people who need to talk to each other to
sit less than 50m away from one another (164 feet).

Unless you don’t want them to talk to each other… in which
case, go ahead! Put them further than that, and you’ll nuke
communication.

29

So if you want people to communicate, they have to be within
164ft/50m of each other.

If you can’t manage this, you’re going to need to structure
things around it, and call lots of meetings – NOW YOU HAVE
JUSTIFICATION FOR THEM! (this also applies as team sizes
grow, of course).

What worked fantastically at Surreal was… Scooters. We had
two bays of scooters, one at each end of the office. Need to
talk to someone? Pick one up, scoot around, put it back when
you’re done. People were whizzing around the office at high
speed in no time – and it short circuited the problem (to a
degree). Way better than email/facebook. If you have a large
team, invest in scooters. They’re fun too

30

This is where your team is split across multiple divisions,
companies, or a continent – or several continents. Either way,
you’re way out of Dunbar territory here, and are on your
own…

The two best pieces of advice I can give you here are…

31

You can’t have these people in your tribe if you never see
them. They’ll become the enemy quickly – because they’re not
“real”. (If you can’t smell them, they’re not real). Phone calls
and emails don’t fix this. Video conferences don’t fix it well –
they help a little, but not much.

You need to have face-to-face meetings to fix this. Midway did
this once or twice a year – and quickly, teams we were relying
on who before the meeting were holding us up and causing
problems for us, those idiots! … became “oh my god,
you’re having that problem too? This sucks for
everyone, friend, we’re all in this together!” teams.

Problem: It only works for about 2-3 months (gleaned from
just watching teams start bitching again), and then you have
to rinse and repeat – it wears off. So do it often, as regularly
as you can afford.

32

Pendulum clocks on a shelf synchronize with one another over
time, no matter how thin the shelf is. It’s because they start
to resonate, and the microscopic vibrations (and thin coupling)
between them cause them lose/gain energy until they’re all
going to the same beat. (This is an actual physical property –
you can do the experiment yourself).

The same thing will happen on projects where teams are
dependent on other teams, and then they’ll all ship at the
same time!!! unless you actively guard against it.

33

Firebreaks: Grab a stable drop. That’s the last drop you ever
take. After that, you’re on your own.

Decouple dependencies – find ways to break the dependencies
between the teams, and actively do so.

Productize – respect that you’ve now got a tech team creating
a standalone product for consumption by others – and
decouple them from the game team they were on. This allows
all dependent game teams to ship separately.

Integration ALWAYS takes longer than you hope or expect,
and is painful. And you’ll have that work to do whenever you
have anything in your project that looks or smells like, or
actually IS middleware. So plan for it, and dedicate resources
on the team to integrate the tech, and to know it inside and
out.

34

Oh yes. Crunch.

35

• Suffering Ties That Bind – team crunch 3-9 months

• At this point, panic set in. Design blaming programming.
Programming blaming QA. QA blaming art. Lots of blame
going around.

36

http://www.igda.org/why-crunch-modes-doesnt-work-six-
lessons – Evan Robinson

Ford made more money by REDUCING the work on his people
– because they were working past efficiency. They were also
working on an assembly line which requires little actual hard
thinking – just repetition.

This is an easier environment than a game team, where
everyone has to be sharp and on their game. (Jury is still out
on if 6 hour days is better than 8 for “knowledge work”).

If you crunch for more than a couple of days, you’ll hit
diminishing returns really quickly, and if you measure it, you’ll
probably find that it’s causing more problems than progress. It
actively hurts your project – even if it feels like the right thing
to do.

Everyone’s brains malfunction when they’re tired. Mistakes are

37

made. Humans have a pretty lousy grip on accurate reasoning at
the best of time.

And everyone needs down-time to strategize – that is, to think
about what you’re doing, and look at it from a broader view to see
how you can do it better/what the side effects of it are. Running at
full tilt the whole time actively disables your ability to do this. If
you’re drained to the point where you’re only able to react – you
can’t strategize… heck, you can’t even think tactically, then you’re
going to hit problems.

37

Code part of the Windows 8 Marble Maze Sample, Copyright ©
2011 Microsoft Corp. (I wrote this code about 6 months ago,
and I couldn’t tell you what it means… can you imagine
reading that when you’re tired?)

38

Applies to artists, QA, everyone. We all need downtime, and
we all need sleep.

39

Your biggest advantage here is cutting features early and
often from your schedule. So front-load the important stuff,
and let less-important stuff slip off the end. Sounds like the
SCRUM backlog? Yep, but you don’t need to buy into the
whole SCRUM methodology here – just reschedule at least
once a week, and trim from the end.

Related to this: identify – AND FIX! – problems while they’re
still small. Otherwise they grow, and can require herculean
efforts to fix later.

Sierra’s Carrot – more accurately, Fred Shean’s carrot
(http://www.linkedin.com/pub/fred-shean/0/598/713) was
invented by Fred Shean at Sierra. The idea is this:

• The project is budgeted, planned out, and has a fixed ship
date. And you’re reasonably certain you should be able to
make that date (if not, revise schedule and stop kidding
yourselfe).

40

• If EVERYONE is finished before that ship date, all that extra time
is treated as paid vacation.

• It has to be taken right then (it’s not added to your vacation
time to be used randomly)

• Everyone has to be finished – if you’re finished and
someone else isn’t? Help them across the finish line!

• The business guys balk a little, but if you explain to them that
they’re losing no money (it’s already budgeted for and spent!),
and in return they get better accuracy on shipping on that date,
it’s a no brainer.

• Especially when you point out that people will need a few
weeks to recover from shipping anyway, so all you’re eating
into is this less productive period of time.

• Some people actually decline this time off, and show
up at work anyway… (so you lose even less) (yes, it’s
very surprising, but it really happens)

It works. We did ship 100s of SKUs on time this way. And it
IMPROVES collaboration, unlike a number of other mechanisms you
can use, which actually only improve competition.

40

If it’s your first time at Crunch Club, you have to Crunch.

41

This goes back to this whole reptilian psychology thing. When
we are under pressure, we tend to panic – and blame anyone
who isn’t part of our inner circle. (Or sometimes, the weakest
person in our inner circle).

Watch for this. Look for it. And defuse it. Sometimes it’s a
simple as negotiating a treaty, compromise or collaboration
between the people who are at war. Or just explaining why
things are going screwy, and how it’s really not the other
person’s fault.

We all turn into toddlers under pressure. We whine. We act
out. We throw tantrums. A lot of the time, we just want
someone to hug us and make us feel better. You can do that
by being an expert listener for your team during crunch, and
providing the right brightly printed cartoon band-aids.

42

It’s easy to see why people on game teams can fall into the
trap of hating QA. After all, if they hadn’t found 100 new bugs
in it, you’d have shipped by now… They’re just holding you up!

QA is your last best defense against looking like an idiot in the
eyes of your customer. They’re there to make you look good –
not to slow you down, not to make you look bad. They would
LOVE to have a bug-free, complete game to work on, because
it would mean they can stop playing it and play something
new that they’ve not seen over and over and over and over
and over…. (repeat until you’re sick).

You should always encourage your team to look at QA as your
backstop. They’re not there to catch crappy work on your side
– so do your best work, your own testing, and NEVER just
“throw it over the wall”. They’re there to pick up the things
you missed. They’re partners – not in conflict with you.

No repro = not trying hard enough. Seriously. Most of the time
it’s something hard to repro, but it reallyis a horrible life

43

destroying bug. The end of Suffering: Ties That Bind’s ship cycle
was full of this (surprisingly, mostly due to corrupt content builds on
our servers… that took a while to figure out).

Get the programmer out of their chair and over to the QA person’s
desk. Get the QA person to repro it for the programmer. If they
can’t, then the QA person closes it out as No Repro. Too often,
under pressure, No Repro means “I couldn’t be bothered trying it for
more than 30 seconds”.

(Mind you, it also may be symptomatic of poor QA bug reporting
skills – either way, getting people out of their chairs and over to
each others’ desks will fix this problem).

43

Here’s some tricks for helping the team through crunch…

44

If you don’t feed contractors because “they’re not really part
of the team”, you’re just plain rude and deserve to be
ostracized. Food is social, not just fuel. Unless you want to kill
your team’s relationship with people you’re apparently relying
on to ship a game… in which case, go ahead. Don’t feed them.

And it’s also a great way to give people downtime, cement
team dynamics, and otherwise improve morale. So try to
encourage people to take 30 minutes and eat together. Don’t
force them, but at least nudge them in that direction. It’s
worth it.

45

Seriously, it’s the least you can do. And it’s tax deductible.
Make sure you switch it up though, and don’t order pizza
every night. Give people choices, and let them pick what they
want to eat.

One night I brought in several tubs of flashy ice-cream,
whipped cream, caramel and chocolate sauce, and a bunch of
fresh fruit. It went down well.

46

Booze is a double-edged sword. Programmers are especially
debilitated by it, so use sparingly and carefully. But if you’re
stuck in the office during crunch, shots at 11pm are probably
not a bad idea, and may help your team survive. It certainly
seemed to help at Sierra and Surreal.

At Surreal, there was a bar downstairs. Most people would pop
down for a couple of drinks and then head back up to work
towards the end of a long night.

47

Publishers pay for morale budgets as line-items in budgets.
They’re expected, so create one and use it liberally. Saving the
money doesn’t buy you anything.

I’ve always done this out of my own pocket as a mark of
respect for people on my team. People on other teams have
complained, wondering where their gifts are. I point out that it
was coming out of my salary, and the complaints quickly went
away…

48

If you give people time off, make sure that it’s:

• At least two days AFTER any big dog & pony shows you
crunched for

• At least two WEEKS after you’ve officially gotten through
Cert.

Otherwise, you’re risking having to ask people to come back
during that time off. (Worse is if you do this, then don’t give
the people you called back in extra time off to make up
for it).

So either stagger it (let senior/junior folks go immediately, but
keep leads around), or hold off until you know you’re in the
clear.

49

50

The recipe:

Beer (or soda)

Notepad + pen

Soccer ball (optional)

Team members

NO GAMES! The focus has to be on collaborative
communication – board games break this down.

51

Originally, it started as a way to get out in the sun – I’d
decided that I wasn’t going to crunch through the summer
again, and as you can imagine, sun is really important if you
live in Seattle.

So we grabbed a soccer ball and I grabbed a notepad, and we
just started kicking it around. And I noticed that I was getting
way better and more information from my team than before –
and not just the usual stuff you get in status meetings. So I
carried on doing it….

52

Version 2.0 in the new Surreal building – no Soccer Ball
because we’d risk people going over the edge and dropping
three stories to the train tracks below.

But ultimately, still the same thing:

• Away from earshot of other people.

• Focus on talking and chatting.

• A deliberate break from the normal environment.

53

If you’re good, you can get people to talk about all of the
issues they see – and problems with interpersonal dynamics
within and outside of the team – and note them down.

You’ll also get them to share ideas, share solutions to
problems (hey, I’ve worked on that… when we get back in, let
me help you), and build morale and team happiness.

It’s not break time. It’s not a break. It’s a team meeting. But
it looks like a break. It’s sneaky.

54

You need that safe space for communication if you’re going to
hear the bitching. You need to hear the bitching so that you
can either take notes, and go off and fix the problem… or you
can take notes, and then defuse the bitching by explaining the
rationale, and providing suggestions for how they can fix the
problem and make things smoother on their side.

Games get in the way of this, because if someone brings a
board game, (1) it’s immediately competitive, and (2) the
focus shifts towards the game. You want people unengaged in
tactical thinking, or what’s bugging them won’t come out. It’s
very much like a group psychology session.

And yes, you as meeting holder should take notes. Lots of
them. Every little thing. Try to be nonchalant and hide it if you
can.

Either way, this really helps especially in high pressure
situations. You get a lot of bang for your buck with this one,
and it’s practiced at several companies, especially by people I

55

used to manage.

55

56

Everyone should relax… nothing stressful or schedule driven
for a month or two. You need to wind down. Take a vacation.
You’ve earned it!

57

58

59

60

61

