
Nikolaj Kledzik / Frans Enmark
Art Direction & Design

2011 © Nikolaj Kledzik / Frans Enmark

8Polygon – Verktygslåda

Inspiration Logotyp

Practical Particle Lighting

tobias.persson@bitsquid.se

mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se

Overview
– Introduction
–Basic Particle Lighting
– Improvements
–Conclusions

Introduction: Bitsquid
–High-end game engine for licensing
–Currently powering 10 titles in production
–Team sizes between 15 and 40 developers

–Techniques presented used in one announced title so far
– “War of the Roses”, Fatshark / Paradox Interactive

TODO: WOTR screenshot
–Showing lit smoke pillars
–

“War of the Roses”
Courtesy of Fatshark and Paradox Interactive

Introduction: Particle Lighting
–a.k.a. Billboard lighting
–Focus on making billboards fit in with the environment
–Must support dynamic local lights as well as global lighting

environment
–Cheap enough to be used on all non-emissive particles
–Keep PS work to a minimum, push bulk cost to earlier stage

(VS or DS or even off GPU on some arch.)

Motivation screenshot
–Unlit particles

Unlit Particles

Motivation screenshot
–Lit particles

Lit Particles

Vertex Lighting
–Super cheap
–Calc incoming light per-vertex in VS (or on CPU)
–Modulate with particle color in PS

–Solves problem with fitting into rest of the scene
–Better than nothing but looks very flat
–No sense of incoming light direction biggest problem

–Can we do better?

Resurrecting an old friend: HL2-basis
–Project lighting environment to HL2-basis[1]
–Align HL2-basis vectors with billboard (i.e view space)

X+

Z+

Y+

Lighting using HL2-basis
– In VS: For all light sources affecting the billboard vertex -

accumulate incoming light

void accumulate_lighting(Output o, half3 light_dir, half3 light_col, half atten) {
light_col *= atten;
half3 weights = saturate(dot(light_dir, hl2_basis0),
	 	 	 	 dot(light_dir, hl2_basis1),
	 	 	 	 dot(light_dir, hl2_basis2));
o.basis_col0 += light_col * weights.x;
o.basis_col1 += light_col * weights.y;
o.basis_col2 += light_col * weights.z;

}

Lighting using HL2-basis
–To evaluate per pixel lighting in the PS we need some

form of normal
–Allow VFX artist t0 provide a normal map
–Extra texture lookup + tangent space transform
–Consider encoding normal in same texture as diffuse

–For low-frequency content (smoke & dust etc) some simple
curvature approximation is enough, we use:

–
// billboard_normal == -view_direction
half3 n = lerp(billboard_normal, normalize(corner-center), curvature_amount);
// rotate it to view space
n = mul(normalize(n), (float3x3)view);

Lighting using HL2-basis
–Evaluating the incoming per-pixel light is simple

half3 n = normalize(i.normal);
half3 w = saturate(dot(n, hl2_basis0), dot(n, hl2_basis1), dot(n, hl2_basis2));
half3 diffuse_light = i.basis_col0 * w.x + i.basis_col1 * w.y + i.basis_col2 * w.z;

Multiple light sources screenshot

Multiple Light Sources
Green is a spot light, Red & Blue are omnis

View space HL2-basis
–Gives good enough indication of light direction
–Cheap
–Decently compact representation (3xfloat3)

Improvements
–Shadow receiving
– Increasing light sampling frequency (DX11)
–Shadow casting
–Quick note on self-shadowing techniques

Shadow Receiving
–Shadow map look-up in VS
–Requires hardware with fast VS texture reads

–Recycling of shadow map RTs can cause problems
–You might not have them around by the time you render the

billboards
–Deferred CSM: Render biggest slice last and let it cover entire

frustum
– In 16:9 you are probably almost doing that already

–However low-res shadow map is fine since sample frequency is per-
vertex
–Consider keeping low-res versions of your shadow maps around

Shadow Receiving
- VS sampled shadow map

Sampling shadow map in vertex shader

Increasing light sampling frequency
–On DX11 HW we can use tessellation to increase

sampling frequency of the shadow map
–And rest of the lighting environment if desired
–More precise capturing of light attenuation

–Simple to implement
–Push VS light accumulation code down to DS
–HS main is just a simple pass-through shader
–Patch constant function is not though..

Increasing light sampling frequency
–Be careful not to over-tessellate in the distance
–LOD metric that strives for constant screen space sized

triangles
const float wanted_tri_size = 16; // 16x16 pixel triangles

// p0, p1, p2 are our patch corners in screen space pixel coordinates
float3 edge_tess_factors = float3(

length(p2-p1) / wanted_tri_size,
length(p2-p0) / wanted_tri_size,
length(p1-p0) / wanted_tri_size);

float inside_tessellation = max(edge_tess_factors.x, max(edge_tess_factors.y,
edge_tess_factors.z);

Screenshot
–Showing light accumulation in DS

Sampling shadow map in Domain Shader Sampling shadow map in domain shader

Quality Comparison
VS DS

Screenshot
–Showing light accumulation in DS

Sampling shadow map in Domain Shader Evaluating lighting in domain shader
Green is a spot light, Red & Blue are omnis

Quality Comparison
VS DS

Performance Comparison
– Timings done using

D3D11_QUERY_TIMESTAMP

Sample Frequency Time (ms) Time (ms)
Vertex Shader 0.32 2.83

Domain Shader (32pix) 0.72 4.1
Domain Shader (16pix) 0.82 5.3

Pixel Shader 2.6 20.2

Medium shot Close-up shot

Shadow Casting
–Casting shadows onto opaque geometry is

straightforward
–We use same technique as Crysis2 [2]
–Render particles back-front, accumulate translucency

(blended particle alpha) in single channel 8-bit RT
–Use opaque shadow map as DST with depth test enabled to

avoid back-projection
–CSM: Render shadow casting particles for each cascade
–Combine with shadow intensity from opaque shadow map
–Needs matching filter kernels

Shadow Casting
–Screenshot

Shadow casting using 8-bit translucency map

–Screenshot

Shadow casting using 8-bit translucency map

Quick note on Self-Shadowing
–Lots of research in this area
–Fourier Shadow Mapping [4], “Half-angle Slice

Rendering” [5], Opacity Shadow Maps [6] + variations
–None of them scalable enough to use in large-scale in-game

scenarios
–We have a large area to cover with high depth complexity
–Need “CSM-style” solution

–Perfect for cut-scenes and contained environments though

Conclusions
–Most important: make your particles fit in with the

lighting environment
–Simple techniques takes you a long way, vertex lighting

from key light better than nothing
–HW tessellation is usable for more stuff than

displacement mapping

Thanks!
–Philip Klevestav for letting me use his sci-fi environment
–http://www.philipk.net

–Bitsquid team, Iain Cantly, Jon Jansen, Miguel Sainz,
Nicolas Thibieroz, Yury Uralsky for great feedback!

Questions?
–More Bitsquid @ GDC2012
– “Cutting the Pipe: Achieving Sub-Second Iteration Times”

Wednesday 11:00, Room 3022, Niklas Frykholm
– “Flexible Rendering for Multiple Platforms”

Thursday 2:30, Room 2011, Tobias Persson
–Contact
– tobias.persson@bitsquid.se / @tobias_persson
– slides -> http://www.bitsquid.se

mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se
http://www.bitsquid.se
http://www.bitsquid.se

Resources
– [1] Half-Life 2 / Valve Source Shading
– http://www2.ati.com/developer/gdc/D3DTutorial10_Half-

Life2_Shading.pdf
– [2] Secrets of CryENGINE 3 Graphics Technology
– http://advances.realtimerendering.com/s2011/index.html

– [3] Fourier Opacity Mapping
– http://www.sci.utah.edu/~bavoil/research/shadows/

FourierOpacityMapping_I3D2010.pdf
– [4] Volumetric Particle Shadows
– http://www.naic.edu/~phil/hardware/nvidia/doc/src/smokeParticles/

doc/smokeParticles.pdf
– [5] Opacity Shadow Mapping, Kim and Neumann (2001)

http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://advances.realtimerendering.com/s2011/index.html
http://advances.realtimerendering.com/s2011/index.html
http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdf
http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdf
http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdf
http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdf
http://www.naic.edu/~phil/hardware/nvidia/doc/src/smokeParticles/doc/smokeParticles.pdf
http://www.naic.edu/~phil/hardware/nvidia/doc/src/smokeParticles/doc/smokeParticles.pdf
http://www.naic.edu/~phil/hardware/nvidia/doc/src/smokeParticles/doc/smokeParticles.pdf
http://www.naic.edu/~phil/hardware/nvidia/doc/src/smokeParticles/doc/smokeParticles.pdf

–Bonus Slides

Billboard back-lighting
–Cheap man’s light scattering
– In Vertex-/Domain Shader:
–During light accumulation, also calculate incoming light for

backside of billboard
–Single direction: -billboard normal
– If light casts particle shadows - modulate light attenuation with

translucency map

– In Pixel Shader:
–Modulate back-lighting with inverse opacity value (1-alpha)

multiplied by some artist-tweakable translucency value

Billboard back-lighting
–Screenshot on/off

Back-lighting disabled

Back-lighting with artist-tweaked attenuation

Back-lighting with attenuation from translucency map
Notice the rim-lighting

