
Crowds in Hitman: Absolution

Kasper Fauerby
Lead programmer, IO Interactive

Highlevel goals

● Quality over quantity
● Around 1200 agents per crowd, 500 on-screen
• Player should not distinguish between crowd & npc actors

● Ambient crowd behaviors
● Mill around

● Be aware of points of interest & react to player actions

● Level designer has partial control of placement & movement flows

● Panic crowd behaviors
• Evacuate the crowd area
• Help enhance the action experience of the game
• Never get in the way of the player during action

Crowds in general

● Global knowledge/solution vs. Agent based
● Ex. Global: Continuum based crowds with dynamically updated potential fields

● Ex. Agent: No goals, very local behavior, can appear ”erratic”

● Crowds in a game
● The ”fun factor” is the most important thing

● Perfect simulation (no intersections or stopping up) becomes secondary

● Must be very dynamic and react to player actions

● Level designers must have quite a lot of manual control

● Each agent must visually be of an acceptable quality, even when viewed up close

● My opinion
● The best approach is that of a traditional, but lightweight, AI system

Agenda for today

● What to expect from this hour...
● Cover the main components of our crowd system

● Framework: The cell map, agent model, tools
● AI: Steering & behavior selection
● Animation
● Believability: integration with core gameplay features

● Performance

The cell map

● We could just add X agents to the world, but:
● We need very fast navigation mesh queries (can we walk at a certain position??)
● We need very fast checks for walls & other static obstacles
● We need very fast neighborhood queries

● We overlay a regular grid on top of the nav mesh
● This means that the crowd area is only 2.5D (no overlaps in height)
● Memory usage scales with area of a rectangle, even if walkable region is sparse
● Each cell stores

● Walkable/unwalkable flag
● Current agents in cell (stored as an intrusive singly linked list)

● Can also annotate the map with additional info, as needed for gameplay

The cell map

● Cell annotations
● Exclusion zones

● Panic only cells

● Ambient flow vectors

● Teleporters

● Exit zones

Agent model

● Craig W. Reynolds
● Agent ”particles”

● Position
● Radius
● Forward vector
● Speed
● Steering input

Tools: Initial agent placement

● Agents are distributed onto the cell map as:
● Manually placed individuals
● Groups of agents, manually placed and configured
● Randomly placed agents

● Manually placed individuals
● Originally a debugging tool, but ended up being used quite a lot by level designers

● Groups
● This is what designers really wanted!
● Position and shape: spherical or square
● Agent count
● Optionally: A list of POIs.
● Optionally: A list of idle animation overrides

The crowd framework

Crowd AI

● Based on a state machine
● Steering states: Idle, ”pending walk”, walk
● Behavior/gameplay states: Alert, dead, possessed, prone, scared etc.

● State specific memory
● Each state can define its own ”memory class”, which stores arbitrary state-dependent AI

memory data
● Placement new’ed into fixed-size memory block on each agent
● Wiped & initialized when entering state

● Every frame the agent ”Thinks”
● Steps the AI, using current state and current state memory
● Ask current state if a state change is wanted
● Check external factors to see if a state change is needed (more later...)
● In some cases, change state randomly

Steering: Pending walk

● Used when
● Agent is standing still, but wants to be moving.

● Purpose
● Find the best valid direction and time to start moving
● Since agent is usually in a crowded place this requires some AI logic

● Sub-phases
● ”Search for direction”

● Send out probes to check for wall collisions and other obstructing agents
● Probe direction is changed every frame, favoring directions in front of agent

● ”Wait for clear”
● Wait until agent can start moving
● Communicate a wanted state change to the agent (into walk state)

Steering: Walk

● Used when
● Milling about

● Purpose
● Move agent around, avoiding collisions with walls and other agents

● Algorithm
● Find preferred direction

● Check for walls, and steer to avoid collision
● Check for avoid zones and ambient flows
● Apply wander behavior (Reynolds)

● Sample neighborhood for dynamic obstacles, select worst threat (Reynolds)
● Do ”unaligned collision avoidance” to get actual steering direction (Reynolds+)
● Either accept the steering, or communitate a wish to stop moving

Steering: Key learnings

● This turned out to be hard in dense environments!
● Lots of ”magic numbers” to tweak
● Especially hard when having multiple movement speeds

● Using speed for steering
● Turned out to be critical!
● First decide on a initial preferred and max speed (for example: walk relaxed and walk fast)
● Each steering component (wall or dynamic avoidance) then reports:

● New preferred speed
● New maximum possible speed

● Decision is based on, for example, distance to wall or whether or not a speed change can
resolve a dynamic collision

● A real human often prefers slightly changing speed over changing direction

● Favor stopping to radically changing direction

Steering: Panic

● Same as ”Pending walk” / ”Walk”, but tweaked differently
● Higher speed means different settings for probing for walls, collecting neighbors etc

● Panic steering relies heavily on ”panic flows”
● Each exit in the crowd becomes one separate ”flow channel”
● When cell map is generated, each flow channel is calculated
● Each cell stores: direction to exit, along shortest path, and total cost to reach that exit
● Each agent dynamically switches between flow channels to quickly flee the map

● Needs some manual guidance/annotation in narrow spaces
● Panic flows are based on modified Dijkstra algorithm
● Shortest path generates choke points around corners

Video: Steering behaviors

Behavior selection

● Navigation AI automatically handles state changes

● More specific AI states are handled differently
● A data-driven system makes the crowd react to various players actions

● For example: aiming a gun, shooting, acting suspicious

● A player action spawn up to 3 user-configured zones
● Radius & angle (spherical or cone)

● Agent reaction type: (POI, avoid, alert, scare, go prone)

● Reaction types are listed in ”order of importance”, and a zone can override less
important zones

Behavior zones

Behavior zone pulses

● Zones continously send ”pulses” into the crowd
● This way each zone ”pushes” itself on the affected agents

● When an agent is hit by a behavior pulse
● Is this is now the currently most important behavior zone?

● Check current agent mood (ambient, alerted, scared, paniced, dead)

● Check ”inflicted mood” from zone (derived from reaction type)

● During ”Think”
● If mood for current zone is strictly worse than the current agent mood, then we change AI state

● Benefits of system
● Level designer configures the behavior on a per-crowd basis
● Quick and easy way to handle multiple inputs to the agents

Video: Behavior selection

Animation: First attempt
● What and how?

● Fit animations on top of
simulation

● Share a number of looping clips
between all agents (idle, walk,
run etc)

● At any time: animation state for
an agent is two animation IDs
and a blend weight

● Why?
● Concerned about animation

performance
● Simple to implement

Animation: First attempt
● Pros

● Performance was great
● Navigation logic was stable
● Agents can move at any speed!

● Cons
● Overall robotic look and feel
● Foot sliding in transitions: idle -> walk -> idle
● No turn/banking animations
● Agent animation looks synchronized

● So we added multiple loops per animation, started at random times...
● Tedious and manual approach to controlling animation state from AI code
● Code involved in adding new animations to the system
● Hard to avoid animation glitches and blend errors

● Overall
● The approach was valid, but we had higher ambitions than that....

Animation: Second try

● What and how?
● Ambitious goal - 500 agents on screen with no foot sliding plus support for transition and

turn/banking animations
● Based on heavily modified version of ”Near-optimal Character Animation with Continous

Control”
● Annotated motion clips, high-level steering inputs, data driven

● Agents are now moved by a trajectory channel in the animations, rather than from steering
velocity!

● Each visible agent now needs a uniquely blended animation pose, much like an ordinary NPC

● Why?
● Player gets very close to the individual agents
● We felt that having a high quality of animation on each individual was needed for achieving

a believable crowd experience
● Avoid the robotic feel

Animation: Second try

● Pros
● Looks much better 

● Completely removed tedious animation management code from the crowd AI
● Greatly simplified the AI code itself

● Cons
● Took a lot of work to implement and optimize
● In rare cases a bit more control over the animations can be useful
● And very importantly: Agents reacts much slower to steering input, which makes it harder to avoid

collisions and intersections!

● Overall conclusion
● It was a great success!
● The approach we used for crowd agents might be how we control real NPCs in future

games...

Animation

● Check GDC Vault for: ”Animation Driven
Locomotion for Smoother Navigation”
for further inspiration! (Gabriel Leblanc,
Shawn Harris, Bobby Anguelov)

Believability

● Main challenges:
● Core game mechanics: close combat, human shield etc

● Detail animation

● Visual variety

Core game mechanics

● No wish to have duplicate implementation

● Possession system
● On-demand upgrade agent to full NPC AI

● Allocates small pool of invisible NPCs

● Simple API allows game programmers to switch between
crowd agent and NPC

● Made it trivial to support advanced gameplay mechanics

Detail animation

● Head IK

● Crowd acts
● Talk on phone, smoke, sit on bench

● Uses possession system and existing cut-scene tools

● Spawns randomly near player

● Upper body acts
● Lightweight overlay anims: cough, wave etc.

● Can play while agent walks around

Visual variety

● Unique scaling factor for each agent
● Small amount: ~5%

● Softens up horizon

● Does wonders for percieved diversity of crowd

● Diffuse texture overrides
● Simply replace the diffuse texture of material

● Cheap way of having red shirt, yellow shirt etc..

Performance: PS3
● Some numbers: 1200 agents simulated, 500 on-screen
● PPU: 5ms

● Animation system: ~2ms
● Crowd AI / steering: ~2ms
● Framework: ~1ms

● SPU: ~20ms, distributed across multiple SPUs
● Animation sampling
● Animation blending
● Animation selection logic
● Frustum and occlusion culling
● Crowd AI sensors (more later)

● GPU: 8ms
● Listed here as an example, but obviously very dependent on render tech and meshes used
● In G2: the vertex shader is limiting factor on PS3 due to skinning massive amount of vertices

Performance

● Scaling?
● System has very low general overhead
● Scales nearly linearly with number of agents in crowd
● Culled/on-screen ratio also affects performance, due to animation cost

● Memory layout: Agent data
● On the PS3 the memory layout is one of the most important things for performance
● AI: code is pretty simple, but called many times and:

● Performs a lot of neighborhood searches
● Inspects properties on all neighbor agents

● Size of a full agent ~256 bytes
● Separate out ”agent core”. Stores the most basic properties: position, speed etc. 36 bytes
● Each agent object has a pointer to its corresponding core
● Allocate all cores as a single, 128 byte aligned, block of memory (1200 agents: 42kb)
● Reduces cache missing during simulation and fits on SPUs

Memory layout: Cell map
● Conceptually each cell stores many different pieces of data:

● Walkable/non-walkable (and other ”cell flags”)
● Flow vectors
● Heights
● Head pointer of linked list of current occupiers

● Bad implementation
● Implement class ZCell, map is an array of ZCell objects

● Good implementation
● Map is 4 arrays, each storing a different attribute

● Why?
● Array of struct vs. struct of arrays
● Usually an algorithm is only interested in one of the attributes

● Which can then be 128 byte aligned
● Which can (more easily) fit on SPU local store
● Spans less memory, in turn causing less cache misses

Crowd AI & steering on SPUs

● Moving the entire AI code to SPU is hard
● Has many dependencies between components in the system

● Virtual methods

● Profiling showed a few hotspots
● Neighborhood gathering

● Raycasting through cell map

● Selecting ”worst threat” for steering

● All hotspots are isolated algorithms, working on a limited input!

● Added sensor system
● Sensor input: position and radius for neighborhood, raycast requests etc

● Sensor output: Current neighborhood, current worst threat, ray results

Steering with sensor data
● Sensor input is usually fixed

● Probe a certain distance ahead of agent for walls

● Collect around agent

● Select worst threat

● Sensor input is usually configured once when entering AI state

● Actually, sensor output is not 1 frame delayed
● (except for first frame in state)

Sensor updates on SPUs

● Each job updates X number of agents
● So it fans out on multiple SPUs

● Needed data on local storage
● Agent cores: ~42kb
● For ray casts: ~16kb

● Our crowds have around 16k cells
● Cell flags: Array of bytes

● For neighborhood searches: ~32kb
● Head pointers from cell map (stored as 16bit indices)
● Linked list is intrusive, stored in agent cores

● Sensor input/output for each of the X agents: ~3kb (30 agents per job)

● In total: ~93kb of data needed. Plenty of room for code.

Conclusions

● We managed to create a new crowd system that is a significant step up from
our previous system

● We managed to achieve very good performance, which was necessary since
the crowd has to integrate with a full game

● Having a proper layout of data is critical for performance when handling
massive amount of characters

● It is a time consuming task to tweak all the magic numbers in steering code

● Having proper animation on characters in very dense crowds is very hard,
since steering relies on quick reactions from the characters

Questions?

● (Also feel free to email me at: kasperbf@ioi.dk)

● A big thank you to:

● Michael Büttner

● Nis Haller Baggesen

● Bobby Anguelov

mailto:kasperbf@ioi.dk

