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Quick Overview

● Demo several games ported to HTML5

● Discuss the porting process

● Talk about two compilers to JavaScript, for 
C/C++ and C#



First Demo!



Why is this important?



The Web

Huge market: 100s of millions with HTML5 
game-capable browsers, and growing



Games on the Web!

Access users with minimal friction, lower 
customer acquisition costs

enters
actual
game!



Games on the Web!

More options for reaching users

● Facebook, Kongregate, etc., with a fee
● Run your own website yourself



Browser Plugins

● Flash: 9% tax on fast 3D games

● Unity: Either Flash 9% tax, or no-cost plugin 
but limited reach

● NaCl: Chrome only, Chrome Store only, 30% 
tax



Browser Plugins

Browser plugins go against the industry 
trend

● No plugins in mobile versions of Safari, 
Chrome, Internet Explorer (IE)



But Wait!

Don't plugins give advantages too?



But Wait!

Don't plugins fix browser API 
inconsistencies/limitations?

● Audio - WebAudio API almost standardized
● Sockets - WebRTC will provide raw UDP/TCP



But Wait!

Don't plugins let you protect your code?

● No more and no less than JavaScript can:

j=s[vh>>2]|0;f=rE(j)&7;s[c]=0;if(2>(f-1|0)>>>0))
{g=k;k+=28;h=g+12;i=g+24;gn(g,j);j=s[g>>2];m=s[g
+4>>2];n=g+8|0;p=h+8|0}



But Wait!

Don't plugins run even in Internet 
Explorer?

● 2D is fine
● 3D – WebGL - is indeed an issue in IE



But Wait!

Options for WebGL and Internet Explorer

● Use a plugin on IE (yuck)
● Ignore IE



But Wait!

Plugins let you write in languages other 
than JavaScript

● C++, C#, Java, ActionScript, etc.



Compiling to JavaScript

The best of both worlds

● Use your language and tools of choice
● Generated JavaScript runs in all modern 

browsers without plugins



Compiling to JavaScript: Options

● Emscripten: C, C++
● JSIL: C#

● Mandreel: C, C++, Objective-C
● GWT: Java

We'll talk 
about these 
two



Porting C++ Games with Emscripten



Emscripten

● Compiles C and C++ to JavaScript

● Utilizes LLVM

● Open source and free to use

● Stable and mature, used to port many 
codebases

http://emscripten.org



Emscripten – Ported Projects

• Cube 2
• Heriswap
• SuperTux
• Me & My Shadow
• Ceferino
• Transport Tycoon Deluxe
• Bullet
• Box2D
• Python
• Lua

• Ruby
• Poppler
• FreeType
• eSpeak (TTS)
• SQLite
• OpenJPEG
• zlib
• lzip (LZMA)
• libharu (PDF)
• etc.

http://emscripten.org/


Second Demo!

https://github.com/kripken/meandmyshadow.web



Third Demo!

https://github.com/kripken/ammo.js/



Porting that first person shooter



Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube 
2 game engine



Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube 
2 game engine

● C++ compiled to JavaScript
● OpenGL compiled to WebGL
● Full game: Physics, AI, in-game editor, etc.
● SDL audio compiled to use HTML Audio



Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube 
2 game engine

● Startup uses up to 3 CPU cores:

– Uses crunch to decompress DXT images
– Uses zlib to decompress levels
– Uses browser decoders for PNGs, JPGs



Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube 
2 game engine

● 100% open source – free to learn from the 
code or use it in your own projects

https://github.com/kripken/BananaBread



Emscripten: Porting Process

emcc is a drop-in in replacement for gcc or 
clang

● In many cases can use your normal build 
system, just plug in emcc

emcc -O2 project.cpp -o project.html



Emscripten: Features

Supports familiar libraries like libc, C++ 
std::, SDL, etc.



Emscripten: Features

Supports all OpenGL code that maps directly to 
WebGL (very close to GLES 2.0)

● And also some non-WebGL features too



Emscripten: Limitations

Supports practically all C/C++ code, 
except:

● Nonportable code (x86 asm, crazy stack 
tricks, etc.)



Emscripten: Limitations

No infinite loops on the web

while (1) {
  getInput();
  simulate();
  render();
  wait();
}

void frame() {
  getInput();
  simulate();
  render();
}
[..]
  addHandler(frame);



Emscripten: Limitations

● 64-bit integer math

● No multithreading with shared state

● No Direct3D support, only OpenGL



Compiled C/C++ Performance

● Small benchmarks typically 1.5-6x slower 
than natively compiled C/C++

● Large codebases can hit problems with startup 
compilation

● Not quite native speed yet – but improving 
fast, and already ok even for 3D games!



Compiled C/C++ Performance

Relooper algorithm generates high-level 
native JS control flow from LLVM basic blocks

if (..) {
  ..
}
..



Still, how does JavaScript run a first 
person shooter...?



Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;



Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Force C-like integer behavior using |0 etc.



Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Typed array reads/writes easy to optimize



Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

No garbage collection or property 
accesses



Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Not code you'd write by hand – but good to 
compile to!



Compiling C++ to the Web: Summary

● Reuse existing C/C++ code

● Results can be surprisingly fast

● Your game runs on the web



We've seen C++, now for C#!
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