
Compiling C++ and C# Games
to the Web

Alon Zakai
Researcher, Mozilla

Kevin Gadd

Quick Overview

● Demo several games ported to HTML5

● Discuss the porting process

● Talk about two compilers to JavaScript, for
C/C++ and C#

First Demo!

Why is this important?

The Web

Huge market: 100s of millions with HTML5
game-capable browsers, and growing

Games on the Web!

Access users with minimal friction, lower
customer acquisition costs

enters
actual
game!

Games on the Web!

More options for reaching users

● Facebook, Kongregate, etc., with a fee
● Run your own website yourself

Browser Plugins

● Flash: 9% tax on fast 3D games

● Unity: Either Flash 9% tax, or no-cost plugin
but limited reach

● NaCl: Chrome only, Chrome Store only, 30%
tax

Browser Plugins

Browser plugins go against the industry
trend

● No plugins in mobile versions of Safari,
Chrome, Internet Explorer (IE)

But Wait!

Don't plugins give advantages too?

But Wait!

Don't plugins fix browser API
inconsistencies/limitations?

● Audio - WebAudio API almost standardized
● Sockets - WebRTC will provide raw UDP/TCP

But Wait!

Don't plugins let you protect your code?

● No more and no less than JavaScript can:

j=s[vh>>2]|0;f=rE(j)&7;s[c]=0;if(2>(f-1|0)>>>0))
{g=k;k+=28;h=g+12;i=g+24;gn(g,j);j=s[g>>2];m=s[g
+4>>2];n=g+8|0;p=h+8|0}

But Wait!

Don't plugins run even in Internet
Explorer?

● 2D is fine
● 3D – WebGL - is indeed an issue in IE

But Wait!

Options for WebGL and Internet Explorer

● Use a plugin on IE (yuck)
● Ignore IE

But Wait!

Plugins let you write in languages other
than JavaScript

● C++, C#, Java, ActionScript, etc.

Compiling to JavaScript

The best of both worlds

● Use your language and tools of choice
● Generated JavaScript runs in all modern

browsers without plugins

Compiling to JavaScript: Options

● Emscripten: C, C++
● JSIL: C#

● Mandreel: C, C++, Objective-C
● GWT: Java

We'll talk
about these
two

Porting C++ Games with Emscripten

Emscripten

● Compiles C and C++ to JavaScript

● Utilizes LLVM

● Open source and free to use

● Stable and mature, used to port many
codebases

http://emscripten.org

Emscripten – Ported Projects

• Cube 2
• Heriswap
• SuperTux
• Me & My Shadow
• Ceferino
• Transport Tycoon Deluxe
• Bullet
• Box2D
• Python
• Lua

• Ruby
• Poppler
• FreeType
• eSpeak (TTS)
• SQLite
• OpenJPEG
• zlib
• lzip (LZMA)
• libharu (PDF)
• etc.

http://emscripten.org/

Second Demo!

https://github.com/kripken/meandmyshadow.web

Third Demo!

https://github.com/kripken/ammo.js/

Porting that first person shooter

Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube
2 game engine

Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube
2 game engine

● C++ compiled to JavaScript
● OpenGL compiled to WebGL
● Full game: Physics, AI, in-game editor, etc.
● SDL audio compiled to use HTML Audio

Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube
2 game engine

● Startup uses up to 3 CPU cores:

– Uses crunch to decompress DXT images
– Uses zlib to decompress levels
– Uses browser decoders for PNGs, JPGs

Emscripten: 3D FPS Example

BananaBread – Port of the Sauerbraten/Cube
2 game engine

● 100% open source – free to learn from the
code or use it in your own projects

https://github.com/kripken/BananaBread

Emscripten: Porting Process

emcc is a drop-in in replacement for gcc or
clang

● In many cases can use your normal build
system, just plug in emcc

emcc -O2 project.cpp -o project.html

Emscripten: Features

Supports familiar libraries like libc, C++
std::, SDL, etc.

Emscripten: Features

Supports all OpenGL code that maps directly to
WebGL (very close to GLES 2.0)

● And also some non-WebGL features too

Emscripten: Limitations

Supports practically all C/C++ code,
except:

● Nonportable code (x86 asm, crazy stack
tricks, etc.)

Emscripten: Limitations

No infinite loops on the web

while (1) {
 getInput();
 simulate();
 render();
 wait();
}

void frame() {
 getInput();
 simulate();
 render();
}
[..]
 addHandler(frame);

Emscripten: Limitations

● 64-bit integer math

● No multithreading with shared state

● No Direct3D support, only OpenGL

Compiled C/C++ Performance

● Small benchmarks typically 1.5-6x slower
than natively compiled C/C++

● Large codebases can hit problems with startup
compilation

● Not quite native speed yet – but improving
fast, and already ok even for 3D games!

Compiled C/C++ Performance

Relooper algorithm generates high-level
native JS control flow from LLVM basic blocks

if (..) {
 ..
}
..

Still, how does JavaScript run a first
person shooter...?

Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Force C-like integer behavior using |0 etc.

Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Typed array reads/writes easy to optimize

Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

No garbage collection or property
accesses

Compiled C/C++ Performance

Example code:

var x = func(y);
HEAP8[(x + 1)|0] = 10;
var z = (x+10)|0;

Not code you'd write by hand – but good to
compile to!

Compiling C++ to the Web: Summary

● Reuse existing C/C++ code

● Results can be surprisingly fast

● Your game runs on the web

We've seen C++, now for C#!

	Session Title Speaker Name Speaker Title & Company
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

