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Welcome to the rigid body solver presentation. First I’ll show 
you a couple of demos so that you can see the results you can 
get with rigid body dynamics. This demo shows rigid body 
destruction of an arena made out of stone. As I fire the 
weapon, you’ll notice the stone fracture, the debris fall, and 
form stable piles on the ground. The physics and graphics are 
all running on a single GPU. 
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The fracture tech and demo were made by these researchers 
and artists at NVIDIA. 
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In the next demo you will see rigid body destruction 
implemented in a real game, Hawken by Adhesive games. 
Again the physics and graphics are running on the same GPU. 
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In previous years that we’ve done this talk, we’ve had a wide 
range of abilities in the audience. 

 

I know that some of you write physics solvers for a living, and 
may be interested in the details, and I refer you to our 
SIGGRAPH paper. 
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The presentation you are about to see has four sections. 

 

First, what do you need the rigid bodies in your games to do? 

Second, I’ll show you how you can write a solver to get these 
behaviors and avoid these problems. For beginners, I’ll start 
from how to apply a force to a rigid body and go from there.  

 

Third, for those of you that write games physics solvers for a 
living, I want to give you something too. So I’ll also show you 
how to fix some of the problems unique to parallel solvers. 

 

Finally, I’ll show you the benefits of solving these problems, 
and the effects you can get by running large simulations on 
many threads. 

 

I’ll try and leave 10 minutes at the end for questions, so I ask 
that you wait until then to ask them. 
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Section 1: Problem/Requirements 

 

Games have lots of rigid objects, like the player, vehicles, non player 
characters, and the static environment. 

What do you need rigid bodies to do? 

 

• Accelerate and decelerate. Even early games had this. 

• Appear to be solid, in other words, not go through each other. 

• Fall under gravity. 

• Slide down slopes. 

• Stop sliding. We need to simulate surface properties like roughness, or 
friction. If we don’t do this, then everything will look like it is sliding 
around on ice. 

• Bounce like basketballs, or not bounce like concrete rubble. 

• Form piles. This is just a consequence of objects not going through each 
other and falling under gravity, but it is surprisingly hard to get right, so 
it gets its own mention.  

The picture on this slide shows a demo that we did a couple of years where 
you could wander around an art gallery making large piles of debris by 
blowing things up with a rocket launcher. 
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Cast your mind back to high school physics class. You 
probably learned how to calculate the motion of projectiles, 
like the one on the left. You probably also learned how to 
calculate and apply a collision impulse of two bodies in mid-air, 
like the diagram in the middle. The green arrows show the 
forces involved. 

 

Cases like the diagram on the right are harder. This shows a 
pile of objects coming to rest on the ground. You can see that 
there are many forces involved, and that they all depend on 
one another.  
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The motion of each body is determined by the sum of all the 
forces acting on it. 

If forces don’t exactly sum to zero for each body, then the pile 
will never come to rest, and instead will jitter. 
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Finding a set of forces that will eventually sum to zero is hard, 
because applying a force or impulse at one point on a body 
immediately affects the velocities at other points.  

 

It is complicated further if you want to solve different forces 
on different threads. 

 

This is why you might need a solver like the one I’m going to 
describe today. 
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This section is the introductory section, and will be familiar to 
those of you who were here last year.  

 

Section three is where the new material starts. 
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Definition of rigid body coordinates 

In graphics APIs like OpenGL and DirectX, it’s easy to animate rigid 
objects. Why? It’s because we can specify mesh vertices relative to 
a local coordinate frame. So when we render, we don’t have to 
specify the world coordinate of each vertex each frame, we just 
change the transformation matrix to move the mesh in the scene. 

 

Ok, so let’s talk about using rigid body physics to move the mesh 
around the scene. So the first concept I’d like to introduce is the 
center of mass. In graphics, it doesn’t usually matter where the 
artist places the origin of the mesh. In rigid body physics, the 
center of mass of a mesh has special significance, so to keep things 
simple, let’s assume that the artist has placed the origin of the 
mesh at the center of mass. (If this isn’t true, we can just store an 
offset). So a rigid body engine modifies the mesh’s transformation 
matrix each frame to move the center of mass around the scene, 
and the rest of the mesh follows. Also, the physics engine can rotate 
the mesh around the center of mass by changing the orientation 
part of the transformation matrix. 

 

The transformation matrix can be efficiently stored as a position and 
a quaternion, a 7D vector. We call this 7D vector “the pose of the 
mesh in rigid body coordinates”. I’m going to use the letter x to 
represent the rigid body pose in this presentation. 
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Velocities and impulses in rigid body coordinates 

We can express other things in rigid body coordinates, like 
velocities and impulses. Just as the rigid body pose uniquely 
determines the position of every vertex of the body, the rigid 
body velocity (the linear and angular velocity of the center of 
mass) determines the velocity of every vertex (and also every 
other point) of the rigid body. 

We’ll show how to calculate this in a minute.  
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I recommend that you think of rigid body physics in terms of 
impulses and velocities, rather than forces and accelerations. 

Why? Friction is much better behaved at the impulse-velocity 
level and it also allows us to treat resting contact in the same 
way as colliding contact. 
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You’ll hear the word impulse used in two ways, the first is in 
the term “impulsive force”. 

 

Imagine a car travelling at constant speed towards a concrete 
wall. Once the car hits the concrete wall its speed will go to 
zero very quickly. In the inelastic rigid body model this 
happens instantly. The graph at the top of the slide shows how 
the velocity of such a car changes over time. 

 

Underneath that graph is the corresponding graph of the force 
between the wall and the car on the same time axis. You can 
see that the force is zero almost everywhere, except at this 
very short period of time where the wall is reducing the car’s 
velocity, where it is very high. 

 

Such forces that are applied over infinitesimally small time 
periods are called impulsive forces. 

15 



The second way I’ll use the term impulse is the area under a 
force-time graph between two points in time, the integral of 
force with respect to time. 

 

In your simulations you need to know the state of the system 
at regular intervals in time, the times in which you render a 
frame of graphics. 

In the force-acceleration model, you’d calculate forces to apply 
only at these instants of time (assuming that you don’t 
subdivide the time step). 

 

In the impulse-velocity model, you instead solve to find the 
area under the force-time graph between frames. This allows 
you to calculate systems that have impulsive forces between 
frames, and treat resting contact and colliding contact in the 
same way.  It also ensures that certain common frictional 
contact situations always have a solution. (see Baraff D. 
“Issues in computing contact forces for non-penetrating rigid 
bodies” for details of this common frictional contact situation). 
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If you want to apply a constant force, you can easily convert it to an 
impulse by multiplying by the time step, h. Most of the rules about 
applying forces applies to impulses, for example, impulses occur in 
equal and opposite pairs, just like forces. 
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The boxes on this slide show that applying a force changes 
acceleration, and applying an impulse changes velocities. 
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Earlier I showed you how you can track quantities like position 
and velocity at only one point, the center of mass.  

 

If you want to apply an impulse to a vertex (or other point on 
the rigid body), you can calculate the equivalent rigid body 
impulse (a linear and angular impulse at the center of mass) 
and apply the impulse by changing the rigid body velocity. 
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A rigid body engine is just something that updates a pose and 
velocity in rigid body coordinates each frame, according to 
some contacts supplied by a collision detection engine. 

This slide shows the highest level representation of a rigid 
body engine. Over the next few slides you’ll see the diagram 
become more detailed. 

19 



The simplest rigid body physics engine you could write would 
just move a single body through the air without collisions. 

  

This box shows how to transform the rigid body coordinates 
each frame. 

First you update the velocity by applying gravity to it. Then 
you use the new velocity to update the pose. 
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The next simplest simulation you could try is a body colliding 
with the ground at a single point of contact. 

The contact here is shown in red, and the picture on the right 
shows what you want to happen. To keep things simple we’re 
going to look at an inelastic contact, so imagine that the box 
and slope are so rigid that the box won’t bounce when it hits 
the slope. 
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You can prevent bodies penetrating each other by applying 
impulses to change their velocities. 

When the box hits the slope, you can apply an impulse to 
counteract the effect of gravity and make the velocity parallel 
with the slope. Making the velocity parallel to the slope will 
cause the body to slide down the slope in future frames. 

This is called solving the contact constraint at the velocity-
impulse level. Collisions will also require positions and 
rotations to be changed slightly, but you’ll hear about that in a 
moment. 
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You want the new velocity to cause the body to slide down the 
slope instead of into penetration.  The first picture shows the 
unconstrained velocity due to gravity in rigid body 
coordinates. Recall from a few slides earlier that the velocity 
of the center of mass determines the velocity of every point 
on the rigid body. I’ll show you exactly how later. In this case, 
the velocity at the contact is the same as the center of mass 
because the body is not rotating. 

You want to eliminate the component of the velocity that is 
pulling the box into penetration, so first you need to calculate 
the magnitude of this velocity component. 
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Once you know the direction and magnitude of the velocity 
component you want to eliminate, you can calculate the 
impulse required to eliminate it. 
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Recall from earlier tha you can apply an impulse anywhere on 
a rigid body by calculating the equivalent impulse in rigid body 
coordinates and applying that. The rigid body impulse is 
shown in the right hand picture. Notice how applying the 
impulse off-center causes a rotation as well as a linear 
impulse. 
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When you apply the impulse to the unconstrained velocity, the 
linear part of the new velocity aligns with the slope, just as we 
had forseen. 
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Now all you need to do is apply the velocity to update the 
position. The picture shows the box rotated so that it is 
parallel with the ground. This will probably take many frames, 
and at some point you are going to get more contacts from 
the collision detection to stop it rotating further through the 
slope. You’ll hear about multiple contacts later. 
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Putting all the previous steps together, this is what you get. 

 

• Apply Gravity 

• Calculate the relative velocity at the contact point (along the 
contact normal) 

• Calculate the impulse to apply at this point that would make 
this relative velocity zero 

• Calculate this impulse in rigid body coordinates 

• Apply this rigid body impulse to the rigid body velocity 

• Update the rigid body pose using the rigid body velocity 
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Now we’ll show how to implement each box in the diagram 
using math.  

The simple update rules for applying gravity and velocity are 
called Euler integration. For people who know about numerical 
integration already, from these isolated blocks it may look like 
we are using explicit Euler, which is only conditionally stable. 
Overall though, we are doing a semi-implicit Euler which is 
unconditionally stable. See the time-stepping papers by 
Anitescu for more information on this.  

There are more complicated integrators available, but they 
don’t do well in systems with discontinuous changes like rigid 
body impacts. Also, even though these integrators are more 
accurate, in games we generally value stability and speed 
more than accuracy.  
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The velocity application in the last slide contains a slight 
problem. I wrote it the way I think about it, but it’s not 
actually true. 

 

The rigid body pose, x, is a 7D vector, a position and a 
quaternion, whereas the rigid body velocity, v is a 6D vector. 
We can’t add these things together.  

 

So how is it done? 

The linear part is just the same as in the last slide, but to 
apply the angular velocity to the quaternion requires the 
formulae on this slide. 
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This is how rigid body impulses are applied. In particle 
dynamics, mass is a single number, but here M is a 6*6 
matrix. The first 3 diagonal elements are just the mass, but 
the bottom right 3*3 block is something called the inertia 
tensor. Just as the mass specifies how hard it is to move a 
body linearly, the inertia specifies how hard it is to rotate a 
body around its center of mass. There are standard formula 
for the inertia of primitives like cubes, etc, a standard way of 
calculating the inertia of a triangle mesh (with uniform 
density), and a standard way of calculating the inertia of 
rigidly attached components when you know the inertia of 
each component. I usually just look that stuff up on the 
internet.  
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Now you need to implement the boxes that give you the 
velocity at a point, given the rigid body velocity, and also the 
box that converts an impulse applied at a point to a rigid body 
impulse. 

The first box is implemented by multiplying the rigid body 
velocity by a matrix J, and the second box is implemented by 
multiplying by the transpose of the same matrix J. In the next 
slide you’ll see what J is. 
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J is a 1*6 matrix, the first three elements are the linear part 
and the second three elements are the angular part. The 
linear part is the contact normal, and the angular part is the 
offset of the contact from the center of mass crossed with the 
contact normal. 

 

Remember in high school that you learned that torque is force 
multiplied by perpendicular distance? The cross product does 
this same kind of operation, but in 3D. 
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There is just one box on the diagram that we have not yet 
converted to math, the one that takes the relative velocity at 
the contact point and works out how much impulse to apply at 
the point to eliminate it.  

I said earlier that overall we will make the method semi 
implicit to ensure that it is unconditionally stable, and this is 
where we’re going to achieve that.  

The way we do this is to ensure that the contact constraint is 
enforced at the end of the timestep, not at the start. So even 
though we don’t know the impulse (lambda) yet, we’ll 
calculate what the velocity will be at the end of the timestep in 
terms of it, calculate the relative velocity in terms of that, 
then solve to find out what the impulse should be.  

First, what is the final velocity in terms of v_rel and lambda  

V_new = V_rel + M^{-1}J^T lambda  

We want the relative velocity to be zero at the end of the 
timestep  

So we want J v_new = 0  
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J v_new = J V_rel + JM^{-1}J^T lambda = 0  

34 



Now you have all the information needed to implement the 
single contact solver diagram. On the right is the code. 
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Multiple contact points 

This is where things start getting tricky 

Applying an impulse at one contact point can affect the 
velocity at many other contact points 

You need to find a set of impulses, one for each contact so 
that when they are applied simultaneously, the velocity 
constraints are satisfied simultaneously (taking into account 
all the coupling between the contacts) 
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I could just give you the multiple contact algorithm now, but 
I’m not going to. 

First I’m going to show you the model that the multiple 
contact algorithm solves. 
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Why am I doing this to you? You just need to know the final 
algorithm so that you can code it, right?  

My experience of writing solvers is that inevitably there is 
some jitter or other undesirable behavior the first time you 
run them. At that point you think, hmm, is this a bug, or is it 
a fundamental problem? How do I know that applying all these 
impulses locally is going to give a globally stable solution?  

So this is the advantage to knowing the model that you are 
approximately solving, once you know what the perfect 
solution should be you can measure how close your 
approximate solution is to it. Also, when you know the model 
you can prove (or read a proof that was written already) that 
your approximate algorithm converges to it, and then if 
something weird happens you can be confident that it is just a 
bug in your code and not some fundamental math problem.  

Also, many people have written solver for similar models 
outside of games, and if you know the model you have 
something to pattern match against when reading papers from 
other fields.  
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In the multiple contact case you need to know what the 
relative velocities are a set of contact points. You can do this 
by making a J matrix with one row for each contact, and 
constructing each row in the same way as in the single contact 
case. 
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Applying J to the rigid body velocity now gives you a vector of 
relative velocities, one for each contact. 
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Given this, you may be thinking that the multiple contact 
problem is a matrix equation that you could solve using a 
standard linear system solver. Is that right? 
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No.  

Instead of being a linear system, what we have is something 
else called a linear complementarity problem (LCP). Don’t 
worry, I’ll explain what the expressions on this slide mean in a 
moment.  
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But first, why is it not a linear system? The answer is that 
contacts can break.  
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On this slide you can see two books sitting on the edge of a 
table. The circle represents the center of mass. The collision 
detection system has generated two contacts in each case, 
shown by the red arrows. 

Intuitively, the book on the left should stay on the table, and 
the one on the right should fall off the table. As the book falls 
off the table, the leftmost contact should stop applying force. 
We call this a breaking contact. 
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Suppose we model the contact impulses as a linear system.  

This means is that we would solve a (matrix) equation to 
calculate the impulses that when applied simultaneously would 
set all the relative velocities to zero.  

The problem is that the only way the solver can achieve this in 
the right hand picture is to apply an attractive force on the left 
contact. This is shown by the downward green arrow. The 
attractive force and zero relative velocity mean that the bar 
won’t fall.  

So a linear system can give attractive impulses, which is fine 
for simulating a book that is jointed to the table, or if the table 
and book are magnetic, but that’s not what we have here.  
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Here is how you can specify what should happen in terms of 
velocities and impulses: 

You’ve seen that for contacts, you want impulses to be non 
attractive (non negative), and you want relative velocities to 
be zero or separating (also non negative).  

There is one other condition that isn’t obvious from this 
example - as soon as a contact is separating, no more impulse 
should be applied. A formal way of saying this is that 
constraints must do no work, which is a law that has many 
names, like Gauss’ principle of least constraint, D’alembert’s 
principle and the principle of virtual work.  

This slide is just these three conditions written in math. They 
are called the Signorini conditions after Antonio Signorini who 
first formalized them. Here is a picture of him.  
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The meaning of this expression is exactly the same as the 
three Signorini conditions from the previous slide, it’s just a 
more compact way of writing them.  

The upside down T means “is complementary to” and velocity 
is complementary to impulse has the same meaning as the 
third Signorini condition.  
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So this is our final model. The first line is Newton’s second law 
of motion, the second line is the definition of velocity, and the 
third line is the Signorini condition from the previous slide.  
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Now you have this idealized model which shows with infinite 
resolution how position and velocity vary over time, between 
collisions graphs of these things are perfectly smooth.  

 

It is not possible to solve this model exactly in all interesting 
cases, and you only need to know the answer once per frame 
anyway. So we cut time into frame sized chunks and 
approximate the functions as straight lines between them. 
This is called doing a time discretization of the model. So you 
can see that I’ve just replaced acceleration with (v_new-
v_old)/h etc.  

 

 

So we went through all that so that I can say: what we are 
solving is not a linear system, it is a linear complementarity 
problem (LCP).  

This unfortunately means that any existing linear system 
solvers that you might know about are not going to work.  
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The good news though is that there is something that does 
solve this LCP model, and it is almost exactly the same as the 
simple one contact algorithm you saw earlier. 
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All you have to do is apply the one contact algorithm to each 
contact in sequence, and then iterate through the whole 
contact list a small number of times. The default number of 
times in PhysX is four.  
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The question though is how you can ensure that the Signorini 
condition is met so make sure that your objects don’t all look 
like magnets.  

The simplest thing you might think of is just take each impulse 
you apply at each iteration and set it to zero if it is negative. 
Remember that negative impulses are attractive impulses and 
positive impulses are repulsive impulses.  
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Ok, the problem is that this doesn’t work, here is why.  

You will need to iterate over all the contacts many times to 
converge to the correct solution.  

What the model tells us is that it is the total impulse applied in 
the frame that must obey the Signorini conditions, not the 
individual impulses.  

These means that we need to keep an impulse accumulator 
for each contact and clamp that each frame, not the impulse 
from the current iteration.  

Suppose that on the first iteration you apply too much impulse 
at a contact. If you clamp the impulse applied on each 
iteration, then you would never be able a negative correction 
to reduce the impulse that was too large.  
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Instead, you just need to keep accumulators that track how 
much impulse was applied to each contact this frame and 
clamp those.  

54 



 

Here is the final algorithm in code  
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Earlier I said that you could mainly think about using impulses 
to correct the velocities.  

As the timestep size is fixed you can’t completely ignore 
position errors though.  

The middle diagram shows what might happen if you apply 
the corrected velocity with a fixed timestep. You can see here 
that there is both a linear position error and that the box has 
rotated too much.  

So you need a way to pop the box out of the slope and rotate 
it to the correct orientation, as shown in the right hand 
diagram. This process is called position projection.  
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The collision detection can tell you how much penetration has 
occurred, here I represent it with the letter Phi. It is better to 
just remove a proportion of the penetration each frame rather 
than all of it, because that will ensure that the correction 
happens smoothly and avoid one cause of jitter. PhysX is hard 
coded to remove 80% of the penetration each frame. Earlier 
you saw that Jv gives the relative velocity that you want to 
zero (or allow to be positive). All you need to do is add 80% * 
Phi / h to this.  

 

 

Ok, that’s not exactly how we do it in PhysX, Erin’s previous 
talks cover some of the other ways to do this.  
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That completes the description of the widely used PGS/SI 
algorithm for rigid body contact. For single threaded 
implementations, it is a fine algorithm. 

 

If you are a physics engine developer, then you are going to 
be asked at some point in your career to write a multithreaded 
solver. Why?  

 

CPU clock speeds are stagnating, so scaling performance 
means using more cores. Also, at the recent announcement of 
the Playstation4, Sony demonstrated that the PS4 has some 
ability to run physics on the GPU, and GPUs need lots of 
threads to run efficiently. 

 

Next you’ll see how to write a rigid body solver that uses 
many threads. 
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Suppose that you a simulating a box that has just collided 
with the ground. The algorithm I described earlier fixes one 
contact, causing the body to rotate one way, and then fixes 
the other contact, making it rotate the other way. You iterate 
between the two contacts, and the amount of rotation will 
decrease at each iteration, until you have something that you 
can render. 

 

Notice that this is not parallelizable. To calculate the next 
impulse you need the velocity change from the current 
impulse. 
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You may be thinking that this algorithm (PGS) has no 
parallelism. 

 

With more than one body you can get some parallelism by 
coloring. What you do is assign colors to contacts such that in 
each color each body is referenced at most once. Then you 
can process the contacts in each color in parallel, and do the 
colors sequentially. 

 

For example, in this diagram, contacts 3 and 5 can be done in 
parallel, and then 4 and 6 can be done in parallel. 

 

This is not great though, because the number of contacts that 
can be done in parallel is small compared to the number of 
bodies. 
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A different thing you could try is assigning one thread to each 
contact, and have each thread calculate its contact without 
considering what is going on at the other contacts. 

In this diagram you can see that this leads to each contact 
applying too much impulse. 
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Method 1 (PGS) is provably convergent, but has limited 
parallelism, as you saw on the coloring slide. It also suffers 
from a problem called jitter, which I will talk more about in the 
next slide. The method is widely used though. 

 

Method 2 (Projected Jacobi) was maximally parallel so it 
seems like it would be a good choice for a multithreaded 
solver, and doesn’t suffer from this jitter problem, but doesn’t 
converge in some simple cases and converges too slowly, so is 
not used in practice. 
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This video shows the jitter problem. You will see three 
concrete columns be destructed. The debris will fall to the 
floor, and you’d expect the debris to come to rest in piles. 
With PGS with coloring, you don’t see this, instead the pieces 
continue to move, and this is called jitter. 
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Jacobi seemed like a good idea, but it doesn’t converge in 
some simple cases. Here is an example. 
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I’ll show you how we made an algorithm that is similar to 
Jacobi, but does converge, and converges fast enough to be 
used. 

 

The problem with the previous example is that the three 
impulses on the middle body are calculated without knowledge 
of each other, and they just get bigger and bigger, causing 
divergence. 

 

The first idea we had was to split the middle body spatially, so 
that each force has a separate sub-body, and then join them 
back together with fixed joints. 

 

This wasn’t a good idea, splitting a triangle mesh spatially and 
recalculating its inertia is expensive, and takes lots of 
memory. Also you need extra time and memory for the fixed 
joints. 

65 



This slide shows the progression of ideas that lead to this 
dead-end. 
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The next idea we had was that you could split the body non-
spatially. In other words you could take the center of mass, 
and split it into 3 pieces that have the same position and 
spatial extent, each with 1/3 of the mass. You could then fix 
them together using simpler joints at the center of mass. 
Splitting the mass is just scalar division, which is much 
cheaper than splitting and storing geometry. 

67 



You still have the joints though. You can solve a system of 
contacts and joints in a provably convergent way by 
interleaving PGS iterations with matrix solves for the joints. 
Solving a matrix for the fixed joints would be too expensive. 

We realized that you don’t have to solve a matrix to enforce 
the fixed joints, there is a closed form solution, the average of 
the sub-body velocities. Averaging a few velocities is very 
inexpensive. 
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Here is the slide showing the sequence of ideas again. 

We had the idea of splitting the mass non-spatially, then we 
realized that there is a cheap closed form solution for the 
joints, and we ended up with a method that is parallel, 
inexpensive, provably convergent and doesn’t jitter. 
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Here is the same system that you saw earlier using the mass 
splitting algorithm instead of PGS. As you can see, the jitter is 
gone. The computation was implemented using thousands of 
threads on a GPU. 
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Here is what you just saw: 

 

• To pile objects you need a consistent set of forces/impulses, 
and that you can calculate such a set using a solver. 

• You can solve such systems by applying impulses 
sequentially, an called algorithm called PGS. This is good for 
single threaded solvers. 

• If you need to use lots of threads, you could use mass 
splitting, which is jitter-free. 

 

Thanks very much. 
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