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By “fixed” I mean the topology is fixed. Model can be dynamic 
in that it moves either due to a changing overall 
transformation matrix or via some per-control vertex 
transformation such as skinned animation. 
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Generalized non-manifold is the type of data structure used in 
computer aided design software. It completely separates 
geometry and topology, and is much more rigorous that what 
we need to be concerned with for games. It is also far more 
difficult to implement. The complete division between 
geometry and topology makes this quite non-intuitive. 

 

The open source modeling software, Blender, and other digital 
content creation tools used in the game industry, are based on 
non-manifold data topology structures. 
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Note that for a close polygon, such as a triangle, we can find 
traverse the polygon’s boundary loop simply using HE.next 
recursively. 
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The truth is, the face is on the left side only depending on 
viewpoint. If we look at the half edge from a point-of-view 
where the loop is traversed in a counterclockwise fashion, the 
face is on the left of the edge….while walking along the edge 
we would turn towards the left to see the face. If we looked at 
this same object from behind, the face would appear to be on 
the right. 
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Note that due to the orientation flip of the opposite edge, the 
opposite face has the same orientation as the original half 
edge’s face. Orientation consistency is built into the data 
structure. 
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We are focusing on the half edge, but typical implementations 
also define special face and vertex data structures. These 
enable additional traversals that are useful. 

 

The user data could be assigned to the edge, face, and/or 
vertex. It could store, for example, texture or UV mapping 
information. 

 

The marker is useful to aid in traversals. For example, if you 
want to find he constellation of faces around a given starting 
face, then traverse around the face’s loop.  For each vertex 
around the face, find the ring of faces around that vert, but 
skip any face that has a marker value of 1. For any as-yet-
unmarked face, add it to your list, then set marker = 1 for 
that face. By using the marker in this way, it indicates that 
you’ve already visited a face and so it is already in your 
output list. You can also use this for Boolean type searches. 
For example, if you want to find faces connected to vert1, but 
not to vert2, first find the ring of faces around vert2, and set 
marker to 1. Then find the ring of faces around vert1, skipping  
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any face with marker == 1. These are simple examples, but it 
should be clear that marker can enable rather complex selection 
logic. 

 

The marker can also aid in supporting selection modes. For 
example, marker == 0 for non-selected items, and marker == 1 for 
selected items. 

 

You could consider treating the marker as a bitfield, with some bits 
used for selection, some used to indicate traversal status, some 
indicating constraints (e.g., crease/corner edge), etc. 
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Note that we add each new edge in constant time, so the net 
cost is O(n), where n is the number of edges in the loop.  
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The collection of faces that immediately touch the vertex of 
interest is called the “1-ring neighborhood” 

 

Supposed you needed to find all faces connected to a 
collection of vertices 

You can use the approach shown here to collect faces for each 
vertex 

Use marker values to avoid collecting a given face more than 
once 
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IMPORTANT NOTE: If the face is part of a mesh, then 
edge1 is not necessarily the only edge whose endPt is 
vert1. Similarly, edge3 is not necessarily the only edge whose 
endPt is vert2. So, in the case of splitting a face in a 
mesh, it may be necessary to traverse the ring of edges 
around vert1 (and vert2) to find the edge whose endPt 
is vert1 (vert2) and whose face is the face of interest. 
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Caution! If the outer edges weren’t connected properly to 
begin with, will have to traverse edge rings (see following 
slides) for each boundary vertex to locate the boundary edges 
from the inside. This is more expensive. Best to make sure the 
data structure is properly created and maintained, in order to 
extract the best performance. 

 

With regard to exterior boundary connectivity, the half edge 
data structure is difficult to work with when individual 
triangles or triangle groups touch at a single vertex. The lack 
of a common edge leads to topological ambiguity with respect 
to the orientation of the open boundary edges. As a way of 
visualizing this, consider two triangles that share one vertex, 
that happen to be coplanar. As you traverse the outside 
boundary of one triangle, reaching the common vertex, which 
edge of the other triangle do you move to? You may decide 
that it is one particular edge, based on a visualization or 
drawing of the two triangles. You would possibly choose the 
edge that visually suggests a counterclockwise traversal. This 
is not necessarily right and not necessarily wrong. Either 
triangle could be twisted about the common vertex without  
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changing the topology, and this is where the ambiguity arises. There 
simply is not one correct choice for the half edge connectivity when 
one triangle or set of triangles touches another at just a single 
vertex without a common edge. It is possible to resolve this using 
geometric (not topological) reasoning, in some cases. 

 

The problem described above can arise when constructing a half 
edge model from a simple indexed mesh (or polygon soup), even 
when the model ultimately has no scenario like the one described. 
To avoid the ambiguity while constructing a half edge model from a 
simple mesh, it is best to only construct interior edges and faces 
until you have added all vertices and triangles to the half edge 
model. In some cases, when you add a new face, your new interior 
edges will fill in the HE.opposite field of some existing half edge. 
This is the case whenever you add a new face with an edge that is 
adjacent to the interior edge of an existing face. Those edges/faces 
are naturally resolving themselves as being part of the interior of 
the mesh. In the end, some edges will have HE.opposite == NULL. 
You can fill those in as the last step, and use vertex 1 ring traversals 
to fill in the HE.next ordering around the boundary (except, of 
course, in the case of a single shared vertex.) 
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Implementations of subdivision surfaces typically do not apply 
a global subdivision matrix. A global subdivision matrix, which 
updates all vertex positions in a single step, is difficult to 
formulate accurately, in part due to the need to properly 
handle extraordinary vertices (vertices with a non-standard 
valence…see references). The global subdivision matrix also 
makes it more expensive to perform local subdivision 
refinement, which you might want to apply in a view-
dependent level-of-detail application. The reason for the 
added expense is that a global subdivision matrix would 
operate on even vertices/edges/faces that are not currently 
subdivided. Implementations usually smooth the vertices 
around local neighborhoods, effectively using a local 
subdivision matrix that is a function of the neighborhood 
valence. Usually, smoothing is done locally, and in 3 phases: 
1) new face vertex positions are computed first (if doing face 
subdivision, which inserts a new vertex into each face…NOT 
illustrated in this presentation); 2) new edge vertex positions, 
from the edge splits illustrated in this presentation, are 
computed next using appropriate coefficients and positions of 
the pre-smoothed corner vertices and new face vertex 
positions; and, 3) finally, the updated positions of the vertices  
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that existed before subdivision are computed using the new face 
and edge vertex positions, based on the valence of the vertices. 

 

If you are interested in implementing subdivision surfaces, please 
consider reviewing the references and other literature. There is a 
wealth of information available on theory and implementation 
schemes. 
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Note that you can compute a u direction tangent at a 
parametric patch point (u,v) by taking the u derivative of the 
P(u,v) equation on this slide. And you can compute the v 
direction tangent (or bitangent) at the same point by taking 
the v deriviate of P(u,v). The local surface normal at P(u,v) is 
the cross product of the tangent and bitangent. Usually you 
need to normalize these before use. 
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This is our focus. Simple models with at most two 
triangles/polygons touching on common edges. 
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NOTE: It is straightforward to triangulate/cover an open loop 
that is on a plane. Or one that is approximately planar. If the 
edges on the loop are not all coplanar, then it is trickier. It 
may be possible to find some projection plane in which to 
perform the triangulation connectivity (a plane in which the 
projection of the edge loop is a simple polygon with all the 
original edges visible), but a different triangulation will result 
from different project plane choices. Ultimately, the triangles 
produced will not be coplanar if the edges were not coplanar, 
of course. 
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This grid is a portion of the representable floating point 
numbers. These two triangles are defined by corners that are 
representable points. Points not lying on the intersection of 
horizontal and vertical grid lines are not representable. Any 
unrepresentable number is approximated by a representable 
number. 
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This intersection point is not representable, so the floating 
point math system will approximate it with the nearest 
representable number coordinate. 
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Here, though the floating point grid is not shown, you will see 
that a single non-representable intersection point can lead to 
a chain of intersections that aren’t present in the original 
perfect geometry. 
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