Interaction With 3D Geometry

Stan Melax

Graphics Software Engineer, Intel

3D Interaction Happens with Geometric Objects

Rigid Body

 \{Mesh geometry; Vec3 position; Quat orientation; $\}$

Skinned Characters
\{
Mesh geometry; Vec3 position[]; Quat orientation[];

Soft Body

\{
Mesh geometry; Springs connectivity; \};

Agenda - Interacting with 3D Geometry

Practical topics among:

- Core Geometry Concepts
- Convex Polyhedra
- Spatial and Mass Properties
- Soft Geometry and Springs

With examples and implementation issues.

Warning: Some Math Ahead

Vector Arithmetic

Dot Product

$\boldsymbol{M} \boldsymbol{v}=\left[\begin{array}{lll}m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22}\end{array}\right]\left[\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]$

$$
u v^{T}=\left[\begin{array}{lll}
u_{x} v_{x} & u_{x} v_{y} & u_{x} v_{z} \\
u_{y} v_{x} & u_{y} v_{y} & u_{y} v_{z} \\
u_{z} v_{x} & u_{z} v_{y} & u_{z} v_{z}
\end{array}\right]
$$

$$
\frac{d f}{d v}=\left[\begin{array}{lll}
\frac{\partial f_{x}}{\partial v_{x}} & \frac{\partial f_{x}}{\partial v_{y}} & \frac{\partial f_{x}}{\partial v_{z}} \\
\frac{\partial f_{y}}{\partial v_{x}} & \frac{\partial f_{y}}{\partial v_{y}} & \frac{\partial f_{y}}{\partial v_{z}} \\
\frac{\partial f_{z}}{\partial v_{x}} & \frac{\partial f_{z}}{\partial v_{y}} & \frac{\partial f_{z}}{\partial v_{z}}
\end{array}\right]
$$

Matrix Stuff

What's an "outer product"?

Familiar dot or inner product:

$$
u \cdot v=u^{T} v=\left[\begin{array}{lll}
u_{x} & u_{y} & u_{z}
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
$$

Outer product:

$$
u \otimes v=u v^{T}=\left[\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right]\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]=\left[\begin{array}{lll}
u_{x} v_{x} & u_{x} v_{y} & u_{x} v_{z} \\
u_{y} v_{x} & u_{y} v_{y} & u_{y} v_{z} \\
u_{z} v_{x} & u_{z} v_{y} & u_{z} v_{z}
\end{array}\right]
$$

Outer Product - Geometric View

Distance of v along u (scalar)
Projection of v along u (vector)
Outer product $\boldsymbol{u} \otimes \boldsymbol{u}$ of a
$u(u \cdot v) \neq(u \cdot u) v$ unit vector \boldsymbol{u} projects any vector along that direction. $\quad u(u \cdot v)=(u \otimes u) v$

Outer Product for Plane Projection

Remove portion of v
or $(u \otimes u) v$ that runs along u

$$
v-u(u \cdot v)=I v-(u \otimes u) v=(I-(u \otimes u)) v
$$

$\boldsymbol{I}-\boldsymbol{u} \otimes \boldsymbol{u}$ projects any vector onto plane with normal \boldsymbol{u}.

Numerical Precision Issues

Triangles and Planes

- Specify Front and Back

Triangle ($a b c$) CCW winding

Could use:

$$
A x+B y+C z==D
$$

Prefer convention:

$$
A x+B y+C z+D==0
$$

Given a point [xyz] its distance above plane is:

$$
p_{x} x+p_{y} y+p_{z} z+p_{w}
$$

- <0 below
- =0 on plane
- >0 above

Intersection of 3 planes

$$
\begin{aligned}
& p 0_{x} v_{x}+p 0_{y} v_{y}+p 0_{z} v_{z}+p 0_{w}==0 \\
& p 1_{x} v_{x}+p 1_{y} v_{y}+p 1_{z} v_{z}+p 1_{w}==0 \\
& p 2_{x} v_{x}+p 2_{y} v_{y}+p 2_{z} v_{z}+p 2_{w}==0
\end{aligned}
$$

$$
P=\left[\begin{array}{lll}
p 0_{x} & p 0_{y} & p 0_{z} \\
p 1_{x} & p 1_{y} & p 1_{z} \\
p 2_{x} & p 2_{y} & p 2_{z}
\end{array}\right], \quad b=\left[\begin{array}{l}
p 0_{w} \\
p 1_{w} \\
p 2_{w}
\end{array}\right], \quad v=\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
$$

$$
P v=-b
$$

What if we have 4 planes?

Example:

Floor Only

Walls

Roof Planes

Roof Planes overhead view

As house grows bottom up, how will the 4 roof planes come together at the top of this house?

Determining How 4 Planes Meet

 of a convex region

If 4 planes meet at a point xyz then we've found a solution to:

$$
\left[\begin{array}{llll}
p 0_{x} & p 0_{y} & p 0_{z} & p 0_{w} \\
p 1_{x} & p 1_{y} & p 1_{z} & p 1_{w} \\
p 2_{x} & p 2_{y} & p 2_{z} & p 2_{w} \\
p 3_{x} & p 3_{y} & p 3_{z} & p 3_{w}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Only possible if matrix singular.

$$
\mathrm{d}=\left|\begin{array}{llll}
p 0 & p 1 & p 2 & p 3
\end{array}\right|=\left|\begin{array}{llll}
p 0_{x} & p 1_{x} & p 2_{x} & p 3_{x} \\
p 0_{y} & p 1_{y} & p 2_{y} & p 3_{y} \\
p 0_{z} & p 1_{z} & p 2_{z} & p 3_{z} \\
p 0_{w} & p 1_{w} & p 2_{w} & p 3_{w}
\end{array}\right|
$$

Notes: these are top down views of a convex region. Planes well "behaved" all point same way.
Planes in CCW order.
Det of any 3×3 subblock from first 3 xyz rows is >0.

Intersect Line Plane

$$
p_{x y z} \cdot v_{t}+p_{w}
$$

\bigcirc impact $=v_{0}+\left(v_{1}-v_{0}\right) t \quad\left\langle\quad t=\frac{-d_{0}}{d_{1}-d_{0}}=-\frac{p_{x y z} \cdot v_{0}+p_{w}}{\left(p_{x y y} \cdot v_{1}+p_{w}\right)-\left(p_{x y z} \cdot v_{0}+p_{w}\right)}\right.$

Simple Ray Triangle Intersection Test

- Intersect ray with plane and get a point p .
- For each edge va to vb
- Cross product with p-va
- Dot result with tri normal n
- <0 means outside
- Backside hit if $\operatorname{dot}(n, r a y)>0$

Ray Mesh Intersection

- Check Against Every Polygon
- (spatial structures can rule out many quickly)
- Detecting a "hit" - might not be closest
- Numerical Robustness - don't slip between two adjacent triangles.
- Mesh "intact" - t-intersections, holes caused by missing triangles.

Multiple impact points - take closest.

Numeric precision can result in plane intersection point landing just outside each time, thus missing both neighbors.

Solid Geometry

- "Water-Tight" borderless manifold mesh:
- Every edge has 1 adjacency edge going other way
- Consistent winding. Polygon normals all face to exterior.

- The mesh is the boundary representation
- the infinitely thin surface that separates solid matter from empty space.

Inside/Outside Test of a point

- Cast a long ray from point
o point is inside if it first hits the backside of a polygon.
o point is outside the object if it first hits a front side or nothing at all.

Convex Polyhedra

Convex Mesh

Math textbook:

$$
K \text { convex } \leftrightarrow \forall a, b \in K \rightarrow \overline{a b} \subseteq K
$$

- Neighboring face normals tilt away.
- Volume bounded by a number of planes.

- Every vertex lies at or below every face.

Many algorithms much easier when using convex shapes instead of general meshes.

Convex In/Out test

A point is inside a convex volume if it lies under every plane boundary.

No testing with vertices or edges.

Convex Ray Intersection

v0

- Crop Ray with all front facing planes: $n \cdot(v 1-v 0)<0$
- Impact at v0 if under all backside planes

Convex Line-Segment Intersection

- Trim v0 for Front facing planes $n \cdot(v 1-v 0)<0$
- Trim v1 for Back facing planes $n \cdot(v 1-v 0)>0$

Convex-Convex Contact

- Separating Axis Theorem -

Two non touching convex polyhedra are separated by a plane.

- The contact between two touching convex polyhedra will be either
- A point
- A line segment
- A convex polygon

Physics engines like convex objects

Convex Hull from points

Convex Hull - smallest convex polyhedron
 that contains all the points.

- Convex hull of a mesh will contain the mesh.
- Often a sufficient proxy for interaction and collision

Techniques

- Expanding outward: QuickHull [Eddy '77]
- Reducing inward: Gift Wrapping [Chand '70]

Compute 3D Convex Hull

- Start with 2 back to back triangles. (or a tetrahedron)

- Find a vertex outside current volume (above faces).
- Find edge loop silhouette (around all faces below point)

- Replace with new fan of polys
- Remove Folds (if any)
- Rinse and Repeat

Hull Numerical Robustness

Grow Hull

Generated skinny triangle with bad normal.

Flip edge to fix

Hull Tri-Tet Implementation

- Simple Triangle-mesh based approach
- When point d above any [abc] add tetrahedron [abcd] (triangles [acb][dab][dbc][dca]) to mesh.
- Prune any back-to-back tris such as [abc] and [bac]

Hull Tri-Tet Numeric Robustness

- 5 points $\{a, b, c, d, e\}$ are coplanar-ish at one end of the point cloud
- But next point e tests above triangle [abc] but below [adb].
- Silhouette is \{abc\} for which we extrude a new tetrahedron up to e
- This produces triangles [eca],[ebc] (blue) facing the right way and [eab] (red) facing the wrong way - based on known interior point.
- This provides the hindsight to see that [adb] should also be extruded

Simplified Convex Hull

- Off-the-shelf solutions typically generate the complete hull.

- All hull vertices may not be needed and may be inefficient for usage.
- Instead use greedy incremental algorithm picking next vertex that increases hull size the most.
- Stop when vertex count or error threshold reached

Full Hull

Simplified

Minimize Number of Planes vs Points

Minimize Planes:

- Compute full hull
- Dual points $\left[\frac{p_{x}}{p_{w}} \frac{p_{y}}{p_{w}} \frac{p_{z}}{p_{w}}\right]$
- Compute simplified hull
- Take Dual

12 Vertices 20 Planes

20 Vertices
12 Planes

Convex Decomposition

3DS Max Screenshot
Manual Creation of Collision Proxy

Automatic Mesh Decomposition [Ratcliff], [Mamou]

Use skinned mesh bone weights to create collision hulls

Example: Convex Bones For Collisions

www.fraps.com

Ragdolls on Stairs

Hand catching coins

Constructive Solid Geometry Boolean Operations

Solid Geometry Boolean Operations

wwwsfraps_com

${ }^{61 \%}$: os
fp:	:	5.97

Applications for Booleans

Art tools (already have CSG)

- Modeling and level design

Game Usages (less fidelity required):

- Destruction
- Geomod (tunneling)

A convex based approach may suffice.

Convex Cropping and Intersection

- Like general mesh cropping, but only 1 open loop that is itself a convex polygon.
- Intersecting two convexes can be done by cropping one with all the planes of the other
- Non-convex operands can be implemented as a union

Convex Cropping Robustness

- Floating point issues can occur even in this most basic of mesh operations.
- One solution is to utilize plane equations to determine face/plane connectivity.

Pre Slice

Bad Slice

Correct Slice

Robustness with Quantum Planes

Let all planes p of CSG Boolean operands satisfy:

$$
\forall p \exists s: s p=\left[\begin{array}{lllll}
s & p_{x} & s p_{y} & s p_{z} & s p_{w}
\end{array}\right], \quad s p_{\{x, y, z, w\}} \in \mathbb{Z}, \quad\left|s p_{\{x, y, z\}}\right| \leq k
$$

$$
M=\left[\begin{array}{lll}
s_{0} p 0_{x} & s_{0} p 0_{y} & s_{0} p 0_{z} \\
s_{1} p 1_{x} & s_{1} p 1_{y} & s_{1} p 1_{z} \\
s_{2} p 2_{x} & s_{2} p 2_{y} & s_{2} p 2_{z}
\end{array}\right] \quad v=-M^{-1}\left[\begin{array}{l}
s 0 p 0_{w} \\
s 1 p 1_{w} \\
s 2 p 2_{w}
\end{array}\right]
$$

Recall how vertices are the intersection of 3 or more planes

$$
\exists a, b: v_{\{x, y, z\}}=\frac{a}{b}, \quad a, b \in \mathbb{Z}, \quad|b| \leq \operatorname{det}(M) \leq 6 k^{3}
$$

Generated points have Finite denominator

$$
\therefore \exists \varepsilon \forall u, v:\|u-v\|<\varepsilon \leftrightarrow u=v
$$

A fixed epsilon can now be used to indicate if two points are the same.

Destruction - geometry modification

Texturing break

Objects in Motion Spatial Properties

Spatial and Mass Properties

- With a solid mesh we can correctly derive properties that affect motion:
- Volume
- Center of mass
- Covariance (and 3x3 Inertia Tensor)

Triangle Center and Area

$$
\text { center }=\frac{a+b+c}{3}
$$

i.e. Center of mass. There are other ways to define "center".

$$
\text { abs area }=\frac{\|(b-a) \times(c-b)\|}{2}
$$

$$
\text { area }=\frac{((b-a) \times(c-b)) \cdot n}{2}
$$

Given a pre set normal \boldsymbol{n}, result is signed.
So area could be negative.

Cross Product - Edge Choice Irrelevant

$$
(b-a) \times(c-b)=(c-b) \times(a-c)=(a-c) \times(b-a)
$$

All the same

Area of Polygon (2D) Triangle Summation:

- Pick a reference point p. Normal n known.
- For each edge (a, b) sum area of triangle $(\mathrm{p}, \mathrm{a}, \mathrm{b}): \quad \sum \frac{1}{2}(a-p) \times(b-a) \cdot n$
- Signed Area - upside down triangles cancel out extra area if p outside.

Solid's Area Weighted Normals Cancel

Sum of cross

 products for each tetrahedron face is zero.$$
u \times w+w \times v+v \times u+(v-u) \times(w-u)=0
$$

Polygon Normal

- Pick reference point p (origin)

- For each edge (ab) in polygon, sum cross product:

$$
\sum_{\text {Edge }(a, b)}(a-p) \times(b-a)
$$

For a trapezoid explanation search for "Newell Normal"

Tetrahedron Volume and Center

$$
\text { volume }=\frac{(c-a) \times(b-a) \cdot(d-a)}{6}
$$

$$
\begin{gathered}
\text { center } \\
\text { of mass }
\end{gathered}=\frac{a+b+c+d}{4}
$$

$$
=|c-a \quad b-a \quad d-a| \div 6
$$

Triple product in determinant form

Tetrahedron Integration

General Form:

$$
\int_{0}^{u} \int_{0}^{v\left(1-\frac{\alpha}{u}\right)} \int_{0}^{w\left(1-\frac{\alpha}{u}-\frac{\beta}{v}\right)} f(\alpha+\beta+\gamma) d \gamma d \beta d \alpha
$$

Letting $f(X)=1$, we get our volume:

Edges: u, v, w $a=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ (origin)

$$
\int_{0}^{u} \int_{0}^{v\left(1-\frac{\alpha}{u}\right)} \int_{0}^{w\left(1-\frac{\alpha}{u}-\frac{\beta}{v}\right)} \text { (1) } d \gamma d \beta d \alpha=\frac{u v w}{6}
$$

Letting $f(X)=X /$ vol for center of mass (relative to vertex a):

$$
\int_{0}^{u} \int_{0}^{v\left(1-\frac{\alpha}{u}\right)} \int_{0}^{w\left(1-\frac{\alpha}{u}-\frac{\beta}{v}\right)}\left(\frac{\alpha+\beta+\gamma}{u v w / 6}\right) d \gamma d \beta d \alpha=\frac{u+v+w}{4}
$$

Tetrahedral Summation (3D)

$$
\left.\begin{array}{l}
\text { volume }=\sum_{(u, v, w) \in \text { mesh }}|u v w| / 6 \\
\text { center } \\
\text { of mass }
\end{array}=\sum_{(u, v, w) \in \text { mesh }} \frac{(u+v+w)}{4} \frac{|u v w|}{6} / \operatorname{vol}(\text { mesh })\right)
$$

Center of Mass Affects Gameplay

Catapult geometry:

www.fraps.com

Inertia Calculation

3D: 3x3 Inertia Tensor Related to covariance

$$
\left[\begin{array}{ccc}
y y+z z & -x y & -x z \\
-x y & x x+z z & -y z \\
-x z & -y z & x x+y y
\end{array}\right]
$$

Covariance (origin $=$ center of mass)

- If object was a collection of point masses v

$$
\sum v v^{T}=\sum\left[\begin{array}{ccc}
v_{x}{ }^{2} & v_{x} v_{y} & v_{x} v_{z} \\
v_{y} v_{x} & v_{y}{ }^{2} & v_{y} v_{z} \\
v_{z} v_{x} & v_{z} v_{y} & v_{z}{ }^{2}
\end{array}\right]
$$

- Single Tetrahedron (0,u,v,w)...

$$
\int_{0}^{1} \int_{0}^{1-a} \int_{0}^{1-a-b}(a u+b v+c w) \otimes(a u+b v+c w) d c d b d a * v o l_{-} a d j
$$

Tetrahedron ($0, u, v, w$) Covariance

u, v, w are vectors from center of mass to triangle on mesh

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-a} \int_{0}^{1-a-b}(a u+b v+c w)(a u+b v+c w) d c \quad d b d a \\
& \int_{0}^{1} \int_{0}^{1-a} \int_{0}^{1-a-b}\left(u^{2} a^{2}+v^{2} b^{2}+w^{2} c^{2}\right)+(a b u v+b c v w+a c w u)+(a b v u+a c u w+b c w v) d c \quad d b d a \\
& \int_{0}^{1} \int_{0}^{1-a} \frac{1}{3}(a+b-1)\left(-3 a^{2} u^{2}-w^{2}(a+b-1)^{2}-3 b^{2} v^{2}\right)+(a+b-1)(w(a+b-1)(a u+b v)-2 a b u v) d b d a \\
& \int_{0}^{1} \frac{1}{12}(a-1)^{2}\left(a^{2}\left(6 u^{2}+v^{2}+w^{2}\right)-2 a\left(v^{2}+w^{2}\right)+v^{2}+w^{2}\right)+1-\frac{1}{12}(a-1)^{3}(a(4 u(v+w)-v w)+v w) d a \\
& \frac{1}{60}(u u+v v+w w)+\frac{1}{120}(u v+v w+w u)+\frac{1}{120}(v u+u w+w v)
\end{aligned}
$$

Inertia Tetrahedral Summation

$$
\text { intertia: } T=\left[\begin{array}{ccc}
y y+z z & -x y & -x z \\
-x y & x x+z z & -y z \\
-x z & -y z & x x+y y
\end{array}\right]
$$

Sum for each triangle uvw, Covariance matrix C:

$$
c_{i, j}=\sum_{(u, v, w) \in \text { mesh-com }} \frac{2 u_{i} u_{j}+2 v_{i} v_{j}+2 w_{i} w_{j}+u_{i} v_{j}+v_{i} w_{j}+w_{i} u_{j}+u_{i} w_{j}+v_{i} u_{j}+w_{i} v_{j}}{120} \frac{|u v w|}{6}
$$

$$
\text { inertia: } T=\text { Identity }\left(c_{0,0}+c_{1,1}+c_{2,2}\right)-C
$$

Inertia Tensor and Object Motion

wwwifraps.com

Time Integration

Updating state to the next time step.

- Position: $p_{t+d t}=p_{t}+$ velocity $* d t$
- Orientation:

Proof it's the same:

$\lim _{(\|\omega\| d t) \rightarrow 0} s \rightarrow\left[\frac{\omega}{2} d t, 1\right]$
$s * q_{t}=[0001] * q_{t}+\left[\frac{\omega}{2} d t, 0\right] * q_{t}$
$s * q_{t}=q_{t}+\left[\frac{\omega}{2}, 0\right] * q_{t} d t$

Build a Quat for Multiplication

$$
\begin{aligned}
& s=\left[\frac{\omega}{\|\omega\|} \sin \left(\frac{\|\omega\| d t}{2}\right), \cos \left(\frac{\|\omega\| d t}{2}\right)\right] \\
& q_{t+d t}=s * q_{t}
\end{aligned}
$$

Add Derivative

$$
\begin{aligned}
& q_{t+d t}=q_{t}+\frac{d q}{d t} d t \\
& q_{t+d t}=q_{t}+\frac{\omega}{2} q_{t} d t
\end{aligned}
$$

Time Integration without Numerical Drift

$$
\begin{aligned}
& k_{1}=\frac{\omega\left(q_{t}\right)}{2} * q_{t} \\
& k_{2}=\frac{\omega\left(q_{t}+k_{1} * d t / 2\right)}{2} *\left(q_{t}+k_{1} * \frac{d t}{2}\right) \\
& k_{3}=\frac{\omega\left(q_{t}+k_{2} * d t / 2\right)}{2} *\left(q_{t}+k_{2} * \frac{d t}{2}\right) \\
& k_{4}=\frac{\omega\left(q_{t}+k_{3} * d t\right)}{2} *\left(q_{t}+k_{3} * d t\right)
\end{aligned}
$$

$q_{t+d t}=q_{t}+\frac{\omega\left(q_{t}\right)}{2} * q_{t} * d t$
Forward Euler
$q_{t+d t}=q_{t}+k_{1} * \frac{d t}{6}+k_{2} * \frac{d t}{3}+k_{3} * \frac{d t}{3}+k_{4} * \frac{d t}{6}$
Runge Kutta

Time Integration Euler vs RK4

wwwifraps.com
] physics_euler_integration

Forward Euler:

- Spin drifts toward principle axis
- Energy gained

Runge Kutta

- Spin orbits as expected
- Energy stays constant

Soft Body Objects

Soft Body Meshes

- Every vertex has its own position and velocity
- Vertices are connected via springs or constraints.

Object Construction

- Connection topology can differ from visual mesh
- Stiffness can vary to simulate different objects and materials

Cloth
Cube Lattice Table

Time Integration - Simulating Soft Body

Kinematic

- Connections as constraints
- Iterative position projection
- Easy to Implement
- Numerically Robust (will never explode)
- Most common system used
- May not converge under stress (compression or stretch)

Dynamic

- Connections as springs
- Forward Euler can only handle weak "springy" forces
- Implicit Integration required for stiff springs
- Damped behavior
- Converges to force-correct state
- Harder to Implement

Kinematic Solver

Realistic Behavior

Easy To Implement

Algorithm:
repeat a few times for each constraint move endpoints

Implicit Integration Spring Network

- Forward Euler

$$
v_{t+d t}=v_{t}+m^{-1} \text { force }_{t} d t
$$

- Implicit Euler

$$
v_{t+d t}=v_{t}+m^{-1} \text { force } e_{t+d t} d t
$$

$$
\text { force }_{t+d t}=f_{t+d t}=f_{t}+\frac{\partial f}{\partial p} \Delta p+\frac{\partial f}{\partial v} \Delta v, \quad \begin{aligned}
& \text { position } p \\
& \text { velocity } v
\end{aligned}
$$

Derivatives of Force

Force at spring endpoint

$$
f=-k\left(p-r \frac{p}{\|p\|}\right)
$$

$$
\frac{d f}{d v}=\left[\begin{array}{lll}
\frac{\partial f_{x}}{\partial v_{x}} & \frac{\partial f_{x}}{\partial v_{y}} & \frac{\partial f_{x}}{\partial v_{z}} \\
\frac{\partial f_{y}}{\partial v_{x}} & \frac{\partial f_{y}}{\partial v_{y}} & \frac{\partial f_{y}}{\partial v_{z}} \\
\frac{\partial f_{z}}{\partial v_{x}} & \frac{\partial f_{z}}{\partial v_{y}} & \frac{\partial f_{z}}{\partial v_{z}}
\end{array}\right]
$$

Jacobian
Compressed Spring:

Stretched Spring:

How force changes as endpoint moves along spring direction:

$$
\begin{aligned}
& \Delta f=\stackrel{\text { end }}{\rightleftarrows}-\xrightarrow{\text { start }}=\longleftarrow \\
& \Delta p= \\
& \frac{\Delta f}{\Delta p}=-k
\end{aligned}
$$

Derivatives of Force - Endpoint moves orthogonal

$$
\Delta f=\longleftarrow-\longleftarrow=4
$$

Compressed:

$$
\Delta f=\Delta-\pi=\|
$$

$$
\begin{array}{ll}
\Delta f=\uparrow \text { or } \downarrow & \frac{\Delta f}{\Delta p}=-k\left(1-\frac{r}{\|p\|}\right) \\
\Delta p=\downarrow &
\end{array}
$$

Derivatives of Force - 3×3 Jacobian

General change in Force for a given change in position:

$$
\frac{\partial f}{\partial p}=-k\left(\frac{p \otimes p}{p \cdot p}+\left(I-\frac{p \otimes p}{p \cdot p}\right)\left(1-\frac{r}{\|p\|}\right)\right)
$$

Avoid compression singularity by clamping r/\|p\|.

Solve for Δv in linear system:

$$
A \Delta v=b, \quad A=I-\frac{\partial f}{\partial v} d t-\frac{\partial f}{\partial p} d t^{2}, \quad b=f d t+\frac{\partial f}{\partial p} v d t^{2}
$$

Implicit Integration

Force Based

Stiff Springs

Realistic Behavior

Responsive

Convergence (Jitter Free)

Interacting with 3D Geometry

Summary

$$
\int \mu m m \alpha r \gamma
$$

Variety of topics:

Moving beyond triangles, dot and cross product:

- Objects as 3D Solids
- Convex parts Volume
- Spatial props Integration
- "2nd Year" Maths
- Object Motion
- Stiff systems

Integration

Q\&A

Hand Tracking - if someone asks....

Tracking model

Depth data

Front

Fit model

