
Interaction With 3D Geometry

Stan Melax
Graphics Software Engineer, Intel

3D Interaction Happens with Geometric Objects

Rigid Body Skinned Characters Soft Body

{
 Mesh geometry;
 Vec3 position;
 Quat orientation;
};

{
 Mesh geometry;
 Vec3 position[];
 Quat orientation[];
};

{
 Mesh geometry;
 Springs connectivity;
};

Agenda – Interacting with 3D Geometry

Practical topics among:

● Core Geometry Concepts

● Convex Polyhedra

● Spatial and Mass Properties

● Soft Geometry and Springs

With examples and implementation issues.

Warning: Some Math Ahead

u
v

b
a

u

v

u

v

𝑢 ∙ 𝑣 > 0

u
v

𝑢 ∙ 𝑣 < 0

u

v

𝑢 × 𝑣

u

v

𝑣 × 𝑢

Vector Arithmetic Dot Product Cross Product

𝑀𝑣 =

𝑚00 𝑚01 𝑚02

𝑚10 𝑚11 𝑚12

𝑚20 𝑚21 𝑚22

𝑣𝑥

𝑣𝑦

𝑣𝑧

Matrix Stuff

𝑢𝑣𝑇 =

𝑢𝑥𝑣𝑥 𝑢𝑥𝑣𝑦 𝑢𝑥𝑣𝑧
𝑢𝑦𝑣𝑥 𝑢𝑦𝑣𝑦 𝑢𝑦𝑣𝑧
𝑢𝑧𝑣𝑥 𝑢𝑧𝑣𝑦 𝑢𝑧𝑣𝑧

𝑑𝑓

𝑑𝑣
=

𝜕𝑓𝑥
𝜕𝑣𝑥

𝜕𝑓𝑥
𝜕𝑣𝑦

𝜕𝑓𝑥
𝜕𝑣𝑧

𝜕𝑓𝑦

𝜕𝑣𝑥

𝜕𝑓𝑦

𝜕𝑣𝑦

𝜕𝑓𝑦

𝜕𝑣𝑧
𝜕𝑓𝑧
𝜕𝑣𝑥

𝜕𝑓𝑧
𝜕𝑣𝑦

𝜕𝑓𝑧
𝜕𝑣𝑧

What’s an “outer product”?

𝑢 ∙ 𝑣 = 𝑢𝑇𝑣 = 𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥
𝑣𝑦
𝑣𝑧
= 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧

𝑢⨂𝑣 = 𝑢𝑣𝑇 =

𝑢𝑥
𝑢𝑦
𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧 =

𝑢𝑥𝑣𝑥 𝑢𝑥𝑣𝑦 𝑢𝑥𝑣𝑧
𝑢𝑦𝑣𝑥 𝑢𝑦𝑣𝑦 𝑢𝑦𝑣𝑧
𝑢𝑧𝑣𝑥 𝑢𝑧𝑣𝑦 𝑢𝑧𝑣𝑧

Familiar dot or inner product:

Outer product:

Outer Product - Geometric View

Outer product 𝒖⊗ 𝒖 of a
unit vector 𝒖 projects any
vector along that direction.

u

v

u

v

𝑢 = 1
𝑢 ∙ 𝑣

u

v

𝑢(𝑢 ∙ 𝑣)

𝑢 𝑢 ∙ 𝑣 = 𝑢 ⊗ 𝑢 𝑣

𝑢 𝑢 ∙ 𝑣 ≠ 𝑢 ∙ 𝑢 𝑣

Distance of v along u (scalar) Projection of v along u (vector)

Outer Product for Plane Projection

 𝑰 − 𝒖⊗ 𝒖 projects any vector onto plane with normal 𝒖.

u

v

(𝑢 ⊗ 𝑢)𝑣

𝑣 − 𝑢 𝑢 ∙ 𝑣
u

v

u

v

𝑣 − 𝑢 𝑢 ∙ 𝑣 = 𝐼𝑣 − 𝑢 ⊗ 𝑢 𝑣 = (𝐼 − 𝑢 ⊗ 𝑢)𝑣

𝑢 𝑢 ∙ 𝑣
or

−𝑢 𝑢 ∙ 𝑣 −𝑢 𝑢 ∙ 𝑣

Remove portion of v
that runs along u

Numerical Precision Issues

3 “collinear” points

Triangles and Planes

● Specify Front and Back
Could use:
 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 == 𝐷
Prefer convention:
 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 == 0

Given a point [xyz] its
distance above plane is:
 𝑝𝑥 𝑥 + 𝑝𝑦 𝑦 + 𝑝𝑧 𝑧 + 𝑝𝑤

• <0 below
• =0 on plane
• >0 above

𝑝𝑥 𝑝𝑦 𝑝𝑧

Plane 𝑝 = 𝑝𝑥 𝑝𝑦 𝑝𝑧 𝑝𝑤

0 0 0
𝑝𝑤

Triangle (𝑎 𝑏 𝑐)
CCW winding

a
b

c

Intersection of 3 planes

𝑃 =

𝑝0𝑥 𝑝0𝑦 𝑝0𝑧
𝑝1𝑥 𝑝1𝑦 𝑝1𝑧
𝑝2𝑥 𝑝2𝑦 𝑝2𝑧

 , 𝑏 =

𝑝0𝑤
𝑝1𝑤
𝑝2𝑤

, 𝑣 =

𝑣𝑥
𝑣𝑦
𝑣𝑧

p0

p1

p2

p0

p1
p2

v

𝑃𝑣 = −𝑏

𝑣 = −𝑃−1𝑏

𝑝0𝑥 𝑣𝑥 + 𝑝0𝑦 𝑣𝑦 + 𝑝0𝑧 𝑣𝑧 + 𝑝0𝑤 == 0

𝑝1𝑥 𝑣𝑥 + 𝑝1𝑦 𝑣𝑦 + 𝑝1𝑧 𝑣𝑧 + 𝑝1𝑤 == 0

𝑝2𝑥 𝑣𝑥 + 𝑝2𝑦 𝑣𝑦 + 𝑝2𝑧 𝑣𝑧 + 𝑝2𝑤 == 0

What if we have 4 planes?

As house grows bottom up, how will the 4 roof
planes come together at the top of this house?

Floor Only Walls Roof Planes Roof Planes
overhead view

Example:

Determining How 4 Planes Meet

?

𝑝0𝑥 𝑝0𝑦
𝑝1𝑥 𝑝1𝑦

𝑝0𝑧 𝑝0𝑤
𝑝1𝑧 𝑝1𝑤

𝑝2𝑥 𝑝2𝑦
𝑝3𝑥 𝑝3𝑦

𝑝2𝑧 𝑝2𝑤
𝑝3𝑧 𝑝3𝑤

𝑥
𝑦
𝑧
1

=

0
0
0
0

p0

p1

p2

p3
Note: these are top down views
 of a convex region

If 4 planes meet at a point xyz
then we’ve found a solution to:

Only possible if matrix singular.

Determining How 4 Planes Meet

?

d==0 d<0 d>0

d = 𝑝0 𝑝1 𝑝2 𝑝3 =

𝑝0𝑥 𝑝1𝑥
𝑝0𝑦 𝑝1𝑦

𝑝2𝑥 𝑝3𝑥
𝑝2𝑦 𝑝3𝑦

𝑝0𝑧 𝑝1𝑧
𝑝0𝑤 𝑝1𝑤

𝑝2𝑧 𝑝3𝑧
𝑝2𝑤 𝑝3𝑤

p0

p1

p2

p3

Notes: these are top down views of a convex region.
Planes well “behaved” all point same way.
Planes in CCW order.
Det of any 3x3 subblock from first 3 xyz rows is >0.

Intersect Line Plane

p

v1

v0

time

d
is

ta
n
c
e
 a

b
o
v
e
 p

la
n
e

0 1

𝑝𝑥𝑦𝑧 ∙ 𝑣𝑡 + 𝑝𝑤

𝒅𝟎
t=?

𝑡 =
−𝑑0
𝑑1 − 𝑑0

𝑝𝑥𝑦𝑧 = 𝑝𝑥 𝑝𝑦 𝑝𝑧

 𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑣0 + 𝑣1 − 𝑣0 𝑡

𝑑𝑖𝑠𝑡 = 𝑝𝑤

𝑑1 = 𝑝𝑥𝑦𝑧 ∙ 𝑣1 +𝑝𝑤
𝑝𝑥𝑦𝑧

𝑑0 = 𝑝𝑥𝑦𝑧 ∙ 𝑣0 +𝑝𝑤

𝒅𝟏

= −
𝑝𝑥𝑦𝑧 ∙ 𝑣0 + 𝑝𝑤

(𝑝𝑥𝑦𝑧 ∙ 𝑣1 + 𝑝𝑤) − (𝑝𝑥𝑦𝑧 ∙ 𝑣0 + 𝑝𝑤)

Simple Ray Triangle Intersection Test

● Intersect ray with plane and
get a point p.

● For each edge va to vb

● Cross product with p-va

● Dot result with tri normal n

● <0 means outside

● Backside hit if dot(n,ray)>0

p

Ray Mesh Intersection

● Check Against Every Polygon

● (spatial structures can rule out many
quickly)

● Detecting a “hit” - might not be closest

● Numerical Robustness – don’t slip
between two adjacent triangles.

● Mesh “intact” – t-intersections, holes
caused by missing triangles.

Multiple impact points – take closest.

Numeric precision can result in
plane intersection point landing just
outside each time, thus missing
both neighbors.

Solid Geometry

● “Water-Tight” borderless manifold mesh:

● Every edge has 1 adjacency edge going
other way

● Consistent winding. Polygon normals all
face to exterior.

● The mesh is the boundary representation
- the infinitely thin surface that separates
solid matter from empty space.

Inside/Outside Test of a point

● Cast a long ray from point

● point is inside if it first hits
the backside of a polygon.

● point is outside the object if
it first hits a front side or
nothing at all.

ray

p

Convex Polyhedra

Convex Mesh

● Neighboring face normals tilt away.

● Volume bounded by a number of planes.

● Every vertex lies at or below every face.

Many algorithms much easier when using
convex shapes instead of general meshes.

𝐾 𝑐𝑜𝑛𝑣𝑒𝑥 ↔ ∀𝑎, 𝑏 ∈ 𝐾 → 𝑎𝑏 ⊆ 𝐾

𝒂 𝒃

𝑲 Math textbook:

Convex In/Out test

A point is inside a convex volume
if it lies under every plane
boundary.

No testing with vertices or edges.

p

q

w

Convex Ray Intersection

● Crop Ray with all front facing planes: 𝑛 ∙ 𝑣1 − 𝑣0 < 0

● Impact at v0 if under all backside planes

v1

v0

v0
v0

v0

Convex Line-Segment Intersection

● Trim v0 for Front facing planes 𝑛 ∙ 𝑣1 − 𝑣0 < 0

● Trim v1 for Back facing planes 𝑛 ∙ 𝑣1 − 𝑣0 > 0

v0

v1

v0
v1

v0 v1

Convex-Convex Contact
● Separating Axis Theorem –

Two non touching convex polyhedra are
separated by a plane.

● The contact between two touching
convex polyhedra will be either

● A point

● A line segment

● A convex polygon

Physics engines like convex objects

Convex Hull from points

Convex Hull - smallest convex polyhedron
that contains all the points.
● Convex hull of a mesh will contain the mesh.

● Often a sufficient proxy for interaction and
collision

Techniques
● Expanding outward: QuickHull [Eddy ’77]

● Reducing inward: Gift Wrapping [Chand ’70]

Compute 3D Convex Hull

● Start with 2 back to back
triangles. (or a tetrahedron)

● Find a vertex outside current
volume (above faces).

● Find edge loop silhouette (around
all faces below point)

● Replace with new fan of polys

● Remove Folds (if any)

● Rinse and Repeat

Hull Numerical Robustness

Generated skinny
triangle with bad
normal.

Flip edge to fix Grow Hull

Hull Tri-Tet Implementation

● Simple Triangle-mesh based approach

● When point d above any [abc] add tetrahedron
[abcd] (triangles [acb][dab][dbc][dca]) to mesh.

● Prune any back-to-back tris such as [abc] and [bac]

a c

b

d

a c

b

d

a c

b

d

Hull Tri-Tet Numeric Robustness

b

a

c

d

e

● 5 points {a,b,c,d,e} are coplanar-ish at one end of the point cloud

● But next point e tests above triangle [abc] but below [adb].

● Silhouette is {abc} for which we extrude a new tetrahedron up to e

● This produces triangles [eca],[ebc] (blue) facing the right way and
[eab] (red) facing the wrong way – based on known interior point.

● This provides the hindsight to see that [adb] should also be extruded

b

c

e

b

c
e

a a

d d b

c e

a

d

Simplified Convex Hull

● Off-the-shelf solutions typically
generate the complete hull.

● All hull vertices may not be needed
and may be inefficient for usage.

● Instead use greedy incremental
algorithm picking next vertex that
increases hull size the most.

● Stop when vertex count or error
threshold reached

Full Hull Simplified

Minimize Number of Planes vs Points

Minimize Planes:

● Compute full hull

● Dual points
𝑝𝑥

𝑝𝑤

𝑝𝑦

𝑝𝑤

𝑝𝑧

𝑝𝑤

● Compute simplified hull

● Take Dual 12 Vertices
20 Planes

20 Vertices
12 Planes

Convex Decomposition

Manual Creation of
Collision Proxy

Automatic Mesh
Decomposition

[Ratcliff], [Mamou]

Use skinned mesh
bone weights to

create collision hulls

3DS Max Screenshot

Example: Convex Bones For Collisions

Ragdolls on Stairs

Hand catching coins

Constructive Solid Geometry
 Boolean Operations

Solid Geometry Boolean Operations

Applications for Booleans

Art tools (already have CSG)

● Modeling and level design

Game Usages (less fidelity required):

● Destruction

● Geomod (tunneling)

A convex based approach may suffice.

Convex Cropping and Intersection

● Like general mesh cropping,
but only 1 open loop that is
itself a convex polygon.

● Intersecting two convexes
can be done by cropping one
with all the planes of the other

● Non-convex operands can be
implemented as a union

Convex Cropping Robustness
● Floating point issues can occur even in this most
basic of mesh operations.

● One solution is to utilize plane equations to
determine face/plane connectivity.

Correct Slice Bad Slice
Pre Slice

Robustness with Quantum Planes
Let all planes p of CSG Boolean operands satisfy:

𝑀 =

𝑠0𝑝0𝑥 𝑠0𝑝0𝑦 𝑠0𝑝0𝑧
𝑠1𝑝1𝑥 𝑠1𝑝1𝑦 𝑠1𝑝1𝑧
𝑠2𝑝2𝑥 𝑠2𝑝2𝑦 𝑠2𝑝2𝑧

 𝑣 = −𝑀−1
𝑠0𝑝0𝑤
𝑠1𝑝1𝑤
𝑠2𝑝2𝑤

∀𝑝∃𝑠 ∶ 𝑠𝑝 = 𝑠 𝑝𝑥 𝑠 𝑝𝑦 𝑠 𝑝𝑧 𝑠 𝑝𝑤 , 𝑠 𝑝{𝑥,𝑦,𝑧,𝑤} ∈ ℤ, 𝑠𝑝{𝑥,𝑦,𝑧} ≤ 𝑘

∃𝑎, 𝑏: 𝑣{𝑥,𝑦,𝑧}=
𝑎

𝑏
 , 𝑎, 𝑏 ∈ ℤ , 𝑏 ≤ det 𝑀 ≤6𝑘3

∴ ∃𝜀∀𝑢, 𝑣: 𝑢 − 𝑣 < 𝜀 ↔ 𝑢 = 𝑣

Recall how vertices are the
intersection of 3 or more planes

Generated points have
Finite denominator

A fixed epsilon can now be
used to indicate if two
points are the same.

Destruction – geometry modification

Texturing break

Objects in Motion
Spatial Properties

Spatial and Mass Properties

● With a solid mesh we can correctly
derive properties that affect motion:

● Volume

● Center of mass

● Covariance (and 3x3 Inertia Tensor)

Triangle Center and Area

center =
𝑎 + 𝑏 + 𝑐

3

a b

c

abs area =
(𝑏 − 𝑎) × (𝑐 − 𝑏)

2

a b

c

a

b

c

area =
 𝑏 − 𝑎 × 𝑐 − 𝑏 ∙ 𝑛

2

n

Given a pre set
normal n, result
is signed.
So area could be
negative.

i.e. Center of mass.
There are other ways
to define “center”.

Cross Product - Edge Choice Irrelevant

a b

c

𝑐 − 𝑏 × 𝑎 − 𝑐

a b

c

𝑎 − 𝑐 × 𝑏 − 𝑎

a b

c

𝑏 − 𝑎 × 𝑐 − 𝑏

All the same

= =

Area of Polygon (2D)
? Triangle Summation:

● Pick a reference point p. Normal n known.

● For each edge (a,b) sum area of triangle

(p,a,b):
1

2
𝑎 − 𝑝 × 𝑏 − 𝑎 ∙ 𝑛

● Signed Area - upside down triangles cancel
out extra area if p outside.

p p

- =

p

Solid’s Area Weighted Normals Cancel

Sum of cross
products for each
tetrahedron face
is zero. u

v
w

𝑢 × 𝑤 + 𝑤 × 𝑣 + 𝑣 × 𝑢 + 𝑣 − 𝑢 × 𝑤 − 𝑢 = 0

w-u

Polygon Normal
● Pick reference point p (origin)

● For each edge (ab) in polygon,
sum cross product:

p p

+ =

p 𝑎− 𝑝 × (𝑏 − 𝑎)

𝐸𝑑𝑔𝑒 (𝑎,𝑏)

?

For a trapezoid
explanation search
for “Newell Normal”

Tetrahedron Volume and Center

center
of mass

 =
𝑎 + 𝑏 + 𝑐 + 𝑑

4

a
c

b

d

volume =
(𝑐 − 𝑎) × 𝑏 − 𝑎 ∙ (𝑑 − 𝑎)

6

a
c

b

d

= 𝑐 − 𝑎 𝑏 − 𝑎 𝑑 − 𝑎 ÷ 6

Triple product in determinant form

Tetrahedron Integration

a
c

b

d

Edges: u,v,w
a=[0 0 0] (origin)

 𝑓 𝛼 + 𝛽 + 𝛾 𝑑𝛾 𝑑𝛽 𝑑𝛼
𝑤(1−

𝛼
𝑢
 −
𝛽
𝑣
)

0

𝑣(1 −
𝛼
𝑢
)

0

𝑢

0

u

v

w

Letting f(X)=1, we get our volume:

 1 𝑑𝛾 𝑑𝛽 𝑑𝛼
𝑤(1−

𝛼
𝑢
 −
𝛽
𝑣
)

0

𝑣(1 −
𝛼
𝑢
)

0

𝑢

0

 =
𝑢𝑣𝑤

6

𝛼 + 𝛽 + 𝛾

𝑢𝑣𝑤 6
 𝑑𝛾 𝑑𝛽 𝑑𝛼

𝑤(1−
𝛼
𝑢 −
𝛽
𝑣)

0

𝑣(1 −
𝛼
𝑢)

0

𝑢

0

 =
𝑢 + 𝑣 + 𝑤

4

General Form:

Letting f(X)=X/vol for center of mass (relative to vertex a):

Tetrahedral Summation (3D)

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑢 𝑣 𝑤 /6

(𝑢,𝑣,𝑤)∈𝑚𝑒𝑠ℎ

𝑐𝑒𝑛𝑡𝑒𝑟
𝑜𝑓 𝑚𝑎𝑠𝑠 =

𝑢 + 𝑣 + 𝑤

4

𝑢 𝑣 𝑤

6
/𝑣𝑜𝑙(𝑚𝑒𝑠ℎ)

(𝑢,𝑣,𝑤)∈𝑚𝑒𝑠ℎ

origin

Center of Mass Affects Gameplay

Catapult geometry:

Inertia Calculation

2D:
𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓
𝑖𝑛𝑒𝑟𝑡𝑖𝑎

 = 𝑟2 = 𝑥2 + 𝑦2 = 𝑥2 + 𝑦2

Variance in x
Variance in y

3D: 3x3 Inertia Tensor

Related to covariance

𝑦𝑦 + 𝑧𝑧 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥𝑥 + 𝑧𝑧 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥𝑥 + 𝑦𝑦

Fixed Axis

Covariance (origin = center of mass)

● If object was a collection of point masses v

 𝑣𝑣𝑇 =

𝑣𝑥
2 𝑣𝑥𝑣𝑦 𝑣𝑥𝑣𝑧

𝑣𝑦𝑣𝑥 𝑣𝑦
2 𝑣𝑦𝑣𝑧

𝑣𝑧𝑣𝑥 𝑣𝑧𝑣𝑦 𝑣𝑧
2

● Single Tetrahedron (0,u,v,w)…

 𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤 ⨂(𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤) 𝑑𝑐 𝑑𝑏 𝑑𝑎
1−𝑎−𝑏

0

1−𝑎

0

∗ 𝑣𝑜𝑙_𝑎𝑑𝑗
1

0

Tetrahedron (0,u,v,w) Covariance

u,v,w are vectors from center of mass to triangle on mesh

Inertia Tetrahedral Summation

𝑐𝑖,𝑗 =
2𝑢𝑖𝑢𝑗 + 2𝑣𝑖𝑣𝑗 + 2𝑤𝑖𝑤𝑗 + 𝑢𝑖𝑣𝑗 + 𝑣𝑖𝑤𝑗 + 𝑤𝑖𝑢𝑗 + 𝑢𝑖𝑤𝑗 + 𝑣𝑖𝑢𝑗 + 𝑤𝑖𝑣𝑗

120
𝑢,𝑣,𝑤 ∈𝑚𝑒𝑠ℎ−𝑐𝑜𝑚

𝑢 𝑣 𝑤

6

𝑖𝑛𝑒𝑟𝑡𝑖𝑎: 𝑇 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝑐0,0 + 𝑐1,1 + 𝑐2,2) − 𝐶

Center Of Mass
𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎: 𝑇 =

𝑦𝑦 + 𝑧𝑧 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥𝑥 + 𝑧𝑧 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥𝑥 + 𝑦𝑦

Sum for each triangle uvw,
Covariance matrix C:

Inertia Tensor and Object Motion

𝜔 = 𝑞 𝑇−1 𝑞−1 ℎ

𝜔 → 𝑠𝑝𝑖𝑛

ℎ → 𝑚𝑜𝑚𝑒𝑛𝑢𝑚

𝑞 → 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑇 → 𝐼𝑛𝑒𝑟𝑡𝑖𝑎

Time Integration
Updating state to the next time step.

● Position: 𝑝𝑡+𝑑𝑡 = 𝑝𝑡 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡

● Orientation:

𝑞𝑡+𝑑𝑡 = 𝑠 ∗ 𝑞𝑡

𝑠 =
𝜔

𝜔
sin (
𝜔 𝑑𝑡

2
), cos (

𝜔 𝑑𝑡

2
)

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔

2
𝑞𝑡 𝑑𝑡

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝑑𝑞

𝑑𝑡
 𝑑𝑡

Build a Quat for Multiplication Add Derivative

lim
(𝜔 𝑑𝑡)→0

𝑠 →
𝜔

2
𝑑𝑡, 1

𝑠 ∗ 𝑞𝑡 = 0001 ∗ 𝑞𝑡 +
𝜔

2
𝑑𝑡, 0 ∗ 𝑞𝑡

𝑠 ∗ 𝑞𝑡 = 𝑞𝑡 +
𝜔

2
, 0 ∗ 𝑞𝑡 𝑑𝑡

Proof it’s the same:

Time Integration without Numerical Drift

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 ∗ 𝑑𝑡

𝑘1 =
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡

𝑘2 =
𝜔(𝑞𝑡 + 𝑘1 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘1 ∗

𝑑𝑡

2
)

𝑘3 =
𝜔(𝑞𝑡 + 𝑘2 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘2 ∗

𝑑𝑡

2
)

𝑘4 =
𝜔(𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

2
∗ (𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 + 𝑘1 ∗
𝑑𝑡

6
+ 𝑘2 ∗

𝑑𝑡

3
+ 𝑘3 ∗

𝑑𝑡

3
+ 𝑘4 ∗

𝑑𝑡

6

Forward Euler Runge Kutta

Time Integration Euler vs RK4

Forward Euler:
• Spin drifts

toward
principle axis

• Energy gained

Runge Kutta
• Spin orbits as

expected
• Energy stays

constant

Soft Body Objects

Soft Body Meshes

● Every vertex has its own
position and velocity

● Vertices are connected via
springs or constraints.

Object Construction

Cloth Cube Lattice Table

● Connection topology can differ from visual mesh

● Stiffness can vary to simulate different objects and materials

Time Integration – Simulating Soft Body

Kinematic

● Connections as constraints

● Iterative position projection

● Easy to Implement

● Numerically Robust (will
never explode)

● Most common system used

● May not converge under
stress (compression or
stretch)

Dynamic

● Connections as springs

● Forward Euler can only handle
weak “springy” forces

● Implicit Integration required
for stiff springs

● Damped behavior

● Converges to force-correct
state

● Harder to Implement

Kinematic Solver

Realistic Behavior

Easy To Implement

Algorithm:

repeat a few times

 for each constraint

 move endpoints

 toward rest-length

Implicit Integration Spring Network

● Forward Euler

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 +𝑚
−1𝑓𝑜𝑟𝑐𝑒𝑡 𝑑𝑡

● Implicit Euler

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 +𝑚
−1𝑓𝑜𝑟𝑐𝑒𝑡+𝑑𝑡 𝑑𝑡

𝑓𝑜𝑟𝑐𝑒𝑡+𝑑𝑡 = 𝑓𝑡+𝑑𝑡 = 𝑓𝑡 +
𝜕𝑓

𝜕𝑝
Δ𝑝 +
𝜕𝑓

𝜕𝑣
Δ𝑣 ,

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣

Derivatives of Force
𝑑𝑓

𝑑𝑣
=

𝜕𝑓𝑥
𝜕𝑣𝑥

𝜕𝑓𝑥
𝜕𝑣𝑦

𝜕𝑓𝑥
𝜕𝑣𝑧

𝜕𝑓𝑦

𝜕𝑣𝑥

𝜕𝑓𝑦

𝜕𝑣𝑦

𝜕𝑓𝑦

𝜕𝑣𝑧
𝜕𝑓𝑧
𝜕𝑣𝑥

𝜕𝑓𝑧
𝜕𝑣𝑦

𝜕𝑓𝑧
𝜕𝑣𝑧

Jacobian

𝑓 = −𝑘 𝑝 − 𝑟
𝑝

𝑝

0 p

0 p

r

f

f

Δ𝑓
start end

- = =

Δ𝑝 =

Force at spring
endpoint

Compressed Spring:

Stretched Spring:

How force changes
as endpoint moves
along spring direction:

Δ𝑓

Δ𝑝
= −𝑘

Derivatives of Force – Endpoint moves orthogonal

0
0

p

p

f

f

Δ𝑝

Δ𝑓 - = =

f

f

Δ𝑝

Δ𝑓 - = =

Stretched: Compressed:

𝑝𝑠𝑡𝑎𝑟𝑡

𝑝𝑒𝑛𝑑

Δ𝑓 =

Δ𝑝 =

How force changes
as endpoint moves
lateral to spring dir:

Δ𝑓

Δ𝑝
= −𝑘 (1 −

𝑟

𝑝
)

or

Derivatives of Force – 3x3 Jacobian

𝜕𝑓

𝜕𝑝
= −𝑘

𝑝⊗ 𝑝

𝑝 ∙ 𝑝
 + 𝐼 −

𝑝⊗ 𝑝

𝑝 ∙ 𝑝
1 −
𝑟

𝑝

Avoid compression
singularity by
clamping r/||p|| .

General change in Force for a
given change in position:

𝐴 Δ𝑣 = 𝑏 , 𝐴 = 𝐼 −
𝜕𝑓

𝜕𝑣
𝑑𝑡 −
𝜕𝑓

𝜕𝑝
𝑑𝑡2, 𝑏 = 𝑓 𝑑𝑡 +

𝜕𝑓

𝜕𝑝
𝑣 𝑑𝑡2

Solve for Δ𝑣 in linear system:

(note: slightly oversimplified)

Implicit Integration
Force Based

Stiff Springs

Realistic
Behavior

Responsive

Convergence

(Jitter Free)

Summary

Moving beyond triangles,
dot and cross product:

● Objects as 3D Solids

● Convex parts

● Spatial props

● “2nd Year” Maths

● Object Motion

● Stiff systems

 𝜇𝑚𝑚𝛼𝑟𝛾

Variety of topics:

Interacting with 3D Geometry

Volume
Integration

Time
Integration

Q&A

Stan Melax

stan@melax.com

mailto:stan@melax.com

Hand Tracking – if someone asks….

Tracking model Depth data Fit model

