
Interaction With 3D Geometry 
 
Stan Melax 
Graphics Software Engineer, Intel 



3D Interaction Happens with Geometric Objects 

Rigid Body Skinned Characters Soft Body 

{  
   Mesh geometry; 
   Vec3 position; 
   Quat orientation; 
}; 

{ 
   Mesh geometry; 
   Vec3 position[]; 
   Quat orientation[]; 
}; 

{ 
   Mesh geometry; 
   Springs connectivity; 
}; 



Agenda – Interacting with 3D Geometry 

Practical topics among: 

● Core Geometry Concepts 

● Convex Polyhedra 

● Spatial and Mass Properties 

● Soft Geometry and Springs 

 

With examples and implementation issues. 



Warning: Some Math Ahead 

u 
v 

b 
a 

u 

v 

u 

v 

𝑢 ∙ 𝑣 > 0 

u 
v 

𝑢 ∙ 𝑣 < 0 

u 

v 

𝑢 × 𝑣 

u 

v 

𝑣 × 𝑢 

Vector Arithmetic Dot Product Cross Product 

𝑀𝑣 = 

𝑚00 𝑚01 𝑚02

𝑚10 𝑚11 𝑚12

𝑚20 𝑚21 𝑚22

𝑣𝑥

𝑣𝑦

𝑣𝑧

 

Matrix Stuff 

𝑢𝑣𝑇 =

𝑢𝑥𝑣𝑥 𝑢𝑥𝑣𝑦 𝑢𝑥𝑣𝑧
𝑢𝑦𝑣𝑥 𝑢𝑦𝑣𝑦 𝑢𝑦𝑣𝑧
𝑢𝑧𝑣𝑥 𝑢𝑧𝑣𝑦 𝑢𝑧𝑣𝑧

 

𝑑𝑓

𝑑𝑣
=  

𝜕𝑓𝑥
𝜕𝑣𝑥

𝜕𝑓𝑥
𝜕𝑣𝑦

𝜕𝑓𝑥
𝜕𝑣𝑧

𝜕𝑓𝑦

𝜕𝑣𝑥

𝜕𝑓𝑦

𝜕𝑣𝑦

𝜕𝑓𝑦

𝜕𝑣𝑧
𝜕𝑓𝑧
𝜕𝑣𝑥

𝜕𝑓𝑧
𝜕𝑣𝑦

𝜕𝑓𝑧
𝜕𝑣𝑧

 



What’s an “outer product”? 

𝑢 ∙ 𝑣 =  𝑢𝑇𝑣 = 𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥
𝑣𝑦
𝑣𝑧
= 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 

𝑢⨂𝑣 = 𝑢𝑣𝑇 =

𝑢𝑥
𝑢𝑦
𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧 =

𝑢𝑥𝑣𝑥 𝑢𝑥𝑣𝑦 𝑢𝑥𝑣𝑧
𝑢𝑦𝑣𝑥 𝑢𝑦𝑣𝑦 𝑢𝑦𝑣𝑧
𝑢𝑧𝑣𝑥 𝑢𝑧𝑣𝑦 𝑢𝑧𝑣𝑧

 

Familiar dot or inner product: 

Outer product: 



Outer Product - Geometric View 

Outer product 𝒖⊗ 𝒖 of a 
unit vector 𝒖 projects any 
vector along that direction.  

u 

v 

u 

v 

𝑢 = 1 
𝑢 ∙ 𝑣 

u 

v 

𝑢(𝑢 ∙ 𝑣) 

𝑢 𝑢 ∙ 𝑣 = 𝑢 ⊗ 𝑢 𝑣 

𝑢 𝑢 ∙ 𝑣 ≠ 𝑢 ∙ 𝑢 𝑣 

Distance of v along u (scalar) Projection of v along u (vector) 



Outer Product for Plane Projection 

 𝑰 − 𝒖⊗ 𝒖 projects any vector onto plane with normal 𝒖.  

u 

v 

(𝑢 ⊗ 𝑢)𝑣 

𝑣 − 𝑢 𝑢 ∙ 𝑣  
u 

v 

u 

v 

𝑣 − 𝑢 𝑢 ∙ 𝑣 = 𝐼𝑣 − 𝑢 ⊗ 𝑢 𝑣 =  (𝐼 − 𝑢 ⊗ 𝑢 )𝑣 
 

𝑢 𝑢 ∙ 𝑣  
or 

−𝑢 𝑢 ∙ 𝑣  −𝑢 𝑢 ∙ 𝑣  

Remove portion of v  
that runs along u 



Numerical Precision Issues 

3 “collinear” points 



Triangles and Planes 

● Specify Front and Back 
Could use:  
  𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 == 𝐷 
Prefer convention: 
  𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 == 0 
 
 
Given a point [xyz] its 
distance above plane is: 
  𝑝𝑥 𝑥 + 𝑝𝑦 𝑦 + 𝑝𝑧 𝑧 + 𝑝𝑤  

 

•  <0 below     
•  =0 on plane 
•  >0 above  

𝑝𝑥 𝑝𝑦 𝑝𝑧  

Plane 𝑝 = 𝑝𝑥 𝑝𝑦 𝑝𝑧 𝑝𝑤  

0 0 0  
𝑝𝑤 

Triangle (𝑎 𝑏 𝑐) 
CCW winding 

a 
b 

c 



Intersection of 3 planes 

𝑃 =

𝑝0𝑥 𝑝0𝑦 𝑝0𝑧
𝑝1𝑥 𝑝1𝑦 𝑝1𝑧
𝑝2𝑥 𝑝2𝑦 𝑝2𝑧

 , 𝑏 =

𝑝0𝑤
𝑝1𝑤
𝑝2𝑤

, 𝑣 =

𝑣𝑥
𝑣𝑦
𝑣𝑧

 

p0 

p1 

p2 

p0 

p1 
p2 

v 

𝑃𝑣 = −𝑏 

𝑣 = −𝑃−1𝑏 

𝑝0𝑥 𝑣𝑥  +  𝑝0𝑦 𝑣𝑦  +   𝑝0𝑧 𝑣𝑧  +   𝑝0𝑤 == 0 

𝑝1𝑥 𝑣𝑥  +  𝑝1𝑦 𝑣𝑦  +   𝑝1𝑧 𝑣𝑧  +   𝑝1𝑤 == 0 

𝑝2𝑥 𝑣𝑥  +  𝑝2𝑦  𝑣𝑦 +   𝑝2𝑧 𝑣𝑧  +   𝑝2𝑤 == 0 



What if we have 4 planes? 

As house grows bottom up, how will the 4 roof 
planes come together at the top of this house? 

Floor Only Walls Roof Planes Roof Planes 
overhead view 

Example: 



Determining How 4 Planes Meet 

? 

𝑝0𝑥 𝑝0𝑦
𝑝1𝑥 𝑝1𝑦

𝑝0𝑧 𝑝0𝑤
𝑝1𝑧 𝑝1𝑤

𝑝2𝑥 𝑝2𝑦
𝑝3𝑥 𝑝3𝑦

𝑝2𝑧 𝑝2𝑤
𝑝3𝑧 𝑝3𝑤

𝑥
𝑦
𝑧
1

=

0
0
0
0

 

p0 

p1 

p2 

p3 
Note: these are top down views  
          of a convex region 

If 4 planes meet at a point xyz 
then we’ve found a solution to: 

 

Only possible if matrix singular. 



Determining How 4 Planes Meet 

? 

d==0 d<0 d>0 

d =  𝑝0 𝑝1 𝑝2 𝑝3  =  

𝑝0𝑥 𝑝1𝑥
𝑝0𝑦 𝑝1𝑦

𝑝2𝑥 𝑝3𝑥
𝑝2𝑦 𝑝3𝑦

𝑝0𝑧 𝑝1𝑧
𝑝0𝑤 𝑝1𝑤

𝑝2𝑧 𝑝3𝑧
𝑝2𝑤 𝑝3𝑤

  

p0 

p1 

p2 

p3 

Notes: these are top down views of a convex region. 
Planes well “behaved” all point same way. 
Planes in CCW order. 
Det of any 3x3 subblock from first 3 xyz rows is >0. 
 



Intersect Line Plane 

p 

v1 

v0 

time 

d
is

ta
n
c
e
 a

b
o
v
e
 p

la
n
e
 

0 1 

𝑝𝑥𝑦𝑧 ∙ 𝑣𝑡 + 𝑝𝑤 

𝒅𝟎 
t=? 

𝑡 =
−𝑑0
𝑑1 − 𝑑0

 

𝑝𝑥𝑦𝑧 = 𝑝𝑥 𝑝𝑦 𝑝𝑧  

 𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑣0 + 𝑣1 − 𝑣0  𝑡 

𝑑𝑖𝑠𝑡 = 𝑝𝑤 

𝑑1 = 𝑝𝑥𝑦𝑧 ∙ 𝑣1 +𝑝𝑤 
𝑝𝑥𝑦𝑧 

𝑑0 = 𝑝𝑥𝑦𝑧 ∙ 𝑣0 +𝑝𝑤 

𝒅𝟏 

= −
𝑝𝑥𝑦𝑧  ∙  𝑣0  + 𝑝𝑤

(𝑝𝑥𝑦𝑧  ∙  𝑣1 + 𝑝𝑤) − (𝑝𝑥𝑦𝑧  ∙  𝑣0 + 𝑝𝑤)
 



Simple Ray Triangle Intersection Test 

● Intersect ray with plane and 
get a point p. 

● For each edge va to vb 

● Cross product with p-va 

● Dot result with tri normal n 

● <0 means outside 

● Backside hit if dot(n,ray)>0 

p 



Ray Mesh Intersection 

● Check Against Every Polygon 

● (spatial structures can rule out many 
quickly) 

● Detecting a “hit” - might not be closest 

● Numerical Robustness – don’t slip 
between two adjacent triangles.  

● Mesh “intact” – t-intersections, holes 
caused by missing triangles. 

Multiple impact points – take closest. 

Numeric precision can result in 
plane intersection point landing just 
outside each time, thus missing 
both neighbors.   



Solid Geometry 

● “Water-Tight” borderless manifold mesh: 

● Every edge has 1 adjacency edge going 
other way 

● Consistent winding.  Polygon normals all 
face to exterior.  

● The mesh is the boundary representation 
- the infinitely thin surface that separates 
solid matter from empty space. 



Inside/Outside Test of a point 

● Cast a long ray from point 

● point is inside if it first hits 
the backside of a polygon.   

● point is outside the object if 
it first hits a front side or 
nothing at all. 

ray 

p 



Convex Polyhedra 



Convex Mesh 

 

● Neighboring face normals tilt away.  

● Volume bounded by a number of planes. 

● Every vertex lies at or below every face. 

 

Many algorithms much easier when using 
convex shapes instead of general meshes. 

 

𝐾 𝑐𝑜𝑛𝑣𝑒𝑥 ↔   ∀𝑎, 𝑏 ∈ 𝐾 → 𝑎𝑏 ⊆ 𝐾 

𝒂 𝒃 

𝑲 Math textbook: 



Convex In/Out test 

A point is inside a convex volume 
if it lies under every plane 
boundary. 

 

No testing with vertices or edges. 

 

 

p 

q 

w 



Convex Ray Intersection 

● Crop Ray with all front facing planes: 𝑛 ∙ 𝑣1 − 𝑣0 < 0 

● Impact at v0 if under all backside planes 

v1 

v0 

v0 
v0 

v0 



Convex Line-Segment Intersection 

● Trim v0 for Front facing planes   𝑛 ∙ 𝑣1 − 𝑣0 < 0  

● Trim v1 for Back facing planes   𝑛 ∙ 𝑣1 − 𝑣0 > 0 

v0 

v1 

v0 
v1 

v0 v1 



Convex-Convex  Contact  
● Separating Axis Theorem –  

Two non touching convex polyhedra are 
separated by a plane. 

● The contact between two touching 
convex polyhedra will be either 

● A point 

● A line segment 

● A convex polygon 

 

Physics engines like convex objects 



Convex Hull from points 

Convex Hull - smallest convex polyhedron 
that contains all the points. 
● Convex hull of a mesh will contain the mesh. 

● Often a sufficient proxy for interaction and 
collision 

Techniques 
● Expanding outward: QuickHull [Eddy ’77]  

● Reducing inward:  Gift Wrapping [Chand ’70]  

 



Compute 3D Convex Hull 

● Start with 2 back to back 
triangles. (or a tetrahedron) 

● Find a vertex outside current 
volume (above faces). 

● Find edge loop silhouette (around 
all faces below point) 

● Replace with new fan of polys 

● Remove Folds (if any) 

● Rinse and Repeat  



Hull Numerical Robustness 

Generated skinny 
triangle with bad 
normal. 

Flip edge to fix Grow Hull 



Hull Tri-Tet Implementation 

● Simple Triangle-mesh based approach 

● When point d above any [abc] add  tetrahedron 
[abcd] (triangles [acb][dab][dbc][dca]) to mesh. 

● Prune any back-to-back tris such as [abc] and [bac] 

a c 

b 

d 

a c 

b 

d 

a c 

b 

d 



Hull Tri-Tet Numeric Robustness 

b 

a 

c 

d 

e 

● 5 points {a,b,c,d,e} are coplanar-ish at one end of the point cloud 

● But next point e tests above triangle [abc] but below [adb]. 

● Silhouette is {abc} for which we extrude a new tetrahedron up to e 

● This produces triangles [eca],[ebc] (blue) facing the right way and 
[eab] (red) facing the wrong way – based on known interior point. 

● This provides the hindsight to see that [adb] should also be extruded 

b 

c 

e 

b 

c 
e 

a a 

d d b 

c e 

a 

d 



Simplified Convex Hull 

● Off-the-shelf solutions typically 
generate the complete hull.    

● All hull vertices may not be needed 
and may be inefficient for usage.   

● Instead use greedy incremental 
algorithm picking next vertex that 
increases hull size the most. 

● Stop when vertex count or error 
threshold reached 

 

Full Hull Simplified 



Minimize Number of Planes vs Points 

Minimize Planes: 

● Compute full hull 

● Dual  points 
𝑝𝑥

𝑝𝑤

𝑝𝑦

𝑝𝑤

𝑝𝑧

𝑝𝑤
 

● Compute simplified hull 

● Take Dual 12 Vertices 
20 Planes  

20 Vertices 
12 Planes  



Convex Decomposition 

Manual Creation of 
Collision Proxy 

Automatic Mesh 
Decomposition 

[Ratcliff], [Mamou] 

Use skinned mesh 
bone weights to 

create collision hulls 

3DS Max Screenshot 



Example: Convex Bones For Collisions 

Ragdolls on Stairs 

Hand catching coins 



Constructive Solid Geometry 
 Boolean Operations 

 



Solid Geometry Boolean Operations 



Applications for Booleans 

Art tools (already have CSG)  

● Modeling and level design 

 

Game Usages (less fidelity required): 

● Destruction 

● Geomod (tunneling) 

A convex based approach may suffice. 



Convex Cropping and Intersection 

● Like general mesh cropping, 
but only 1 open loop that is 
itself a convex polygon. 

 

● Intersecting two convexes 
can be done by cropping one 
with all the planes of the other 

 

● Non-convex operands can be 
implemented as a union 



Convex Cropping Robustness 
● Floating point issues can occur even in this most 
basic of mesh operations. 

● One solution is to utilize plane equations to 
determine face/plane connectivity.   

Correct Slice Bad Slice 
Pre Slice 



Robustness with Quantum Planes 
Let all planes p of CSG Boolean operands satisfy: 

𝑀 =

𝑠0𝑝0𝑥 𝑠0𝑝0𝑦 𝑠0𝑝0𝑧
𝑠1𝑝1𝑥 𝑠1𝑝1𝑦 𝑠1𝑝1𝑧
𝑠2𝑝2𝑥 𝑠2𝑝2𝑦 𝑠2𝑝2𝑧

 𝑣 = −𝑀−1
𝑠0𝑝0𝑤
𝑠1𝑝1𝑤
𝑠2𝑝2𝑤

 

∀𝑝∃𝑠 ∶ 𝑠𝑝 = 𝑠 𝑝𝑥 𝑠 𝑝𝑦  𝑠 𝑝𝑧 𝑠 𝑝𝑤   , 𝑠 𝑝{𝑥,𝑦,𝑧,𝑤} ∈ ℤ, 𝑠𝑝{𝑥,𝑦,𝑧} ≤ 𝑘 

∃𝑎, 𝑏:  𝑣{𝑥,𝑦,𝑧}=
𝑎

𝑏
  , 𝑎, 𝑏 ∈ ℤ  , 𝑏 ≤ det 𝑀 ≤6𝑘3 

∴ ∃𝜀∀𝑢, 𝑣: 𝑢 − 𝑣 < 𝜀  ↔   𝑢 = 𝑣 

Recall how vertices are the  
intersection of 3 or more planes 

Generated points have  
Finite denominator 

A fixed epsilon can now be 
used to indicate if two 
points are the same. 



Destruction – geometry modification 

Texturing break 



Objects in Motion 
Spatial Properties 

 

 



Spatial and Mass Properties 

● With a solid mesh we can correctly 
derive properties that affect motion: 

● Volume 

● Center of mass 

● Covariance (and 3x3 Inertia Tensor) 



Triangle Center and Area 

center =  
𝑎 + 𝑏 + 𝑐

3
 

a b 

c 

abs area =  
(𝑏 − 𝑎) × (𝑐 − 𝑏)

2
 

a b 

c 

a 

b 

c 

area =  
 𝑏 − 𝑎 × 𝑐 − 𝑏 ∙ 𝑛

2
 

n 

Given a pre set 
normal n, result 
is signed.  
So area could be 
negative. 

i.e. Center of mass. 
There are other ways 
to define “center”. 



Cross Product - Edge Choice Irrelevant 

a b 

c 

𝑐 − 𝑏 × 𝑎 − 𝑐  

a b 

c 

𝑎 − 𝑐 × 𝑏 − 𝑎  

a b 

c 

𝑏 − 𝑎 × 𝑐 − 𝑏  

All the same 

= = 



Area of Polygon (2D) 
? Triangle Summation: 

● Pick a reference point p. Normal n known. 

● For each edge (a,b) sum area of triangle 

(p,a,b):   
1

2
𝑎 − 𝑝 × 𝑏 − 𝑎 ∙ 𝑛 

● Signed Area - upside down triangles cancel 
out extra area if p outside. 

p p 

- = 

p 



Solid’s Area Weighted Normals Cancel  

Sum of cross 
products for each 
tetrahedron face 
is zero. u 

v 
w 

𝑢 × 𝑤 +  𝑤 × 𝑣 +  𝑣 × 𝑢 + 𝑣 − 𝑢 × 𝑤 − 𝑢 = 0 

w-u 



Polygon Normal 
● Pick reference point p (origin) 

● For each edge (ab) in polygon, 
sum cross product: 

p p 

+ = 

p  𝑎− 𝑝 × (𝑏 − 𝑎)

𝐸𝑑𝑔𝑒 (𝑎,𝑏)

 

? 

For a trapezoid 
explanation search 
for “Newell Normal” 



Tetrahedron Volume and Center 

center
of mass

 =  
𝑎 + 𝑏 + 𝑐 + 𝑑

4
 

a 
c 

b 

d 

volume =  
(𝑐 − 𝑎) × 𝑏 − 𝑎 ∙ (𝑑 − 𝑎) 

6
 

a 
c 

b 

d 

= 𝑐 − 𝑎 𝑏 − 𝑎 𝑑 − 𝑎  ÷ 6 

Triple product in determinant form 



Tetrahedron Integration 

a 
c 

b 

d 

Edges: u,v,w 
a=[0 0 0] (origin) 

     𝑓 𝛼 + 𝛽 + 𝛾    𝑑𝛾 𝑑𝛽 𝑑𝛼
𝑤(1− 

𝛼
𝑢
 − 
𝛽
𝑣
)

0

𝑣(1 − 
𝛼
𝑢
)

0

𝑢

0

 
u 

v 

w 

Letting f(X)=1, we get our volume: 

    1    𝑑𝛾 𝑑𝛽 𝑑𝛼
𝑤(1− 

𝛼
𝑢
 − 
𝛽
𝑣
)

0

𝑣(1 − 
𝛼
𝑢
)

0

𝑢

0

  =   
𝑢𝑣𝑤

6
 

     
𝛼 + 𝛽 + 𝛾

𝑢𝑣𝑤 6 
   𝑑𝛾 𝑑𝛽 𝑑𝛼

𝑤(1− 
𝛼
𝑢 − 
𝛽
𝑣)

0

𝑣(1 − 
𝛼
𝑢)

0

𝑢

0

 =  
𝑢 + 𝑣 + 𝑤

4
 

General Form: 

Letting f(X)=X/vol for center of mass (relative to vertex a): 



Tetrahedral Summation  (3D) 

𝑣𝑜𝑙𝑢𝑚𝑒 =   𝑢 𝑣 𝑤 /6

(𝑢,𝑣,𝑤)∈𝑚𝑒𝑠ℎ

 

𝑐𝑒𝑛𝑡𝑒𝑟
𝑜𝑓 𝑚𝑎𝑠𝑠  =  

𝑢 + 𝑣 + 𝑤

4

𝑢 𝑣 𝑤

6 
/𝑣𝑜𝑙(𝑚𝑒𝑠ℎ)

(𝑢,𝑣,𝑤)∈𝑚𝑒𝑠ℎ

 

origin 



Center of Mass Affects Gameplay 

Catapult geometry: 



Inertia Calculation 

2D: 
𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓
𝑖𝑛𝑒𝑟𝑡𝑖𝑎

 =   𝑟2  =  𝑥2 + 𝑦2 =  𝑥2 + 𝑦2 

Variance in x 
Variance in y 

3D: 3x3 Inertia Tensor  

Related to covariance   

𝑦𝑦 + 𝑧𝑧 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥𝑥 + 𝑧𝑧 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥𝑥 + 𝑦𝑦

 

Fixed Axis 



Covariance  (origin = center of mass) 

● If object was a collection of point masses v 

 𝑣𝑣𝑇 = 

𝑣𝑥
2 𝑣𝑥𝑣𝑦 𝑣𝑥𝑣𝑧

𝑣𝑦𝑣𝑥 𝑣𝑦
2 𝑣𝑦𝑣𝑧

𝑣𝑧𝑣𝑥 𝑣𝑧𝑣𝑦 𝑣𝑧
2

 

● Single Tetrahedron (0,u,v,w)… 

    𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤 ⨂(𝑎𝑢 + 𝑏𝑣 + 𝑐𝑤) 𝑑𝑐 𝑑𝑏 𝑑𝑎
1−𝑎−𝑏

0

1−𝑎

0

∗ 𝑣𝑜𝑙_𝑎𝑑𝑗
1

0

 



Tetrahedron (0,u,v,w) Covariance 

u,v,w are vectors from center of mass to triangle on mesh 



Inertia Tetrahedral Summation 

𝑐𝑖,𝑗 =  
2𝑢𝑖𝑢𝑗 + 2𝑣𝑖𝑣𝑗 + 2𝑤𝑖𝑤𝑗 + 𝑢𝑖𝑣𝑗 + 𝑣𝑖𝑤𝑗 + 𝑤𝑖𝑢𝑗 + 𝑢𝑖𝑤𝑗 + 𝑣𝑖𝑢𝑗 + 𝑤𝑖𝑣𝑗

120
𝑢,𝑣,𝑤 ∈𝑚𝑒𝑠ℎ−𝑐𝑜𝑚

 
𝑢 𝑣 𝑤

6 
 

𝑖𝑛𝑒𝑟𝑡𝑖𝑎:  𝑇 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝑐0,0 + 𝑐1,1 + 𝑐2,2)  −  𝐶 

Center Of Mass 
𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎: 𝑇 =  

𝑦𝑦 + 𝑧𝑧 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥𝑥 + 𝑧𝑧 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥𝑥 + 𝑦𝑦

 

Sum for each triangle uvw, 
Covariance matrix C: 



Inertia Tensor and Object Motion 

𝜔 = 𝑞 𝑇−1 𝑞−1 ℎ 

𝜔 → 𝑠𝑝𝑖𝑛 

ℎ → 𝑚𝑜𝑚𝑒𝑛𝑢𝑚 

𝑞 → 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

𝑇 → 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 



Time Integration 
Updating state to the next time step. 

● Position:  𝑝𝑡+𝑑𝑡 = 𝑝𝑡 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡 

● Orientation: 

 

𝑞𝑡+𝑑𝑡 = 𝑠 ∗ 𝑞𝑡 

𝑠 =
𝜔

𝜔
sin (
𝜔  𝑑𝑡

2
), cos (

𝜔  𝑑𝑡

2
)  

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔 

2
𝑞𝑡 𝑑𝑡 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝑑𝑞 

𝑑𝑡
 𝑑𝑡 

Build a Quat for Multiplication Add Derivative 

lim
( 𝜔  𝑑𝑡)→0

𝑠 →
𝜔

2
𝑑𝑡, 1  

𝑠 ∗ 𝑞𝑡 = 0001 ∗ 𝑞𝑡 +
𝜔

2
𝑑𝑡, 0 ∗ 𝑞𝑡 

𝑠 ∗ 𝑞𝑡 = 𝑞𝑡 +
𝜔

2
, 0 ∗ 𝑞𝑡 𝑑𝑡 

Proof it’s the same: 



Time Integration without Numerical Drift 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 ∗ 𝑑𝑡 

𝑘1 =
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 

𝑘2 =
𝜔(𝑞𝑡 + 𝑘1 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘1 ∗

𝑑𝑡

2
) 

𝑘3 =
𝜔(𝑞𝑡 + 𝑘2 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘2 ∗

𝑑𝑡

2
) 

𝑘4 =
𝜔(𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

2
∗ (𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡) 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 + 𝑘1 ∗
𝑑𝑡

6
+ 𝑘2 ∗

𝑑𝑡

3
+ 𝑘3 ∗

𝑑𝑡

3
+ 𝑘4 ∗

𝑑𝑡

6
 

Forward Euler  Runge Kutta 



Time Integration   Euler vs RK4 

Forward Euler: 
• Spin drifts 

toward 
principle axis 

• Energy gained 
 
Runge Kutta 
• Spin orbits as 

expected 
• Energy stays 

constant 



Soft Body Objects 



Soft Body Meshes 

● Every vertex has its own 
position and velocity 

● Vertices are connected via 
springs or constraints. 

 



Object Construction 

Cloth Cube Lattice Table 

● Connection topology can differ from visual mesh 

● Stiffness can vary to simulate different objects and materials 

 



Time Integration – Simulating Soft Body 

Kinematic 

● Connections as constraints 

● Iterative position projection 

● Easy to Implement 

● Numerically Robust (will 
never explode) 

● Most common system used 

● May not converge under 
stress (compression or 
stretch) 

 

 

 

 

Dynamic 

● Connections as springs 

● Forward Euler can only handle 
weak “springy” forces 

● Implicit Integration required 
for stiff springs  

● Damped behavior 

● Converges to force-correct 
state 

● Harder to Implement 

 

 

 



Kinematic Solver 

Realistic Behavior 

 

Easy To Implement 

 

Algorithm: 

repeat a few times 

  for each constraint 

    move endpoints  

    toward rest-length  



Implicit Integration  Spring Network 

● Forward Euler 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 +𝑚
−1𝑓𝑜𝑟𝑐𝑒𝑡 𝑑𝑡 

 

● Implicit Euler 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 +𝑚
−1𝑓𝑜𝑟𝑐𝑒𝑡+𝑑𝑡 𝑑𝑡 

 

𝑓𝑜𝑟𝑐𝑒𝑡+𝑑𝑡 = 𝑓𝑡+𝑑𝑡 = 𝑓𝑡 +
𝜕𝑓

𝜕𝑝
Δ𝑝 +
𝜕𝑓

𝜕𝑣
Δ𝑣 ,    

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣

 

 



Derivatives of Force  
𝑑𝑓

𝑑𝑣
=  

𝜕𝑓𝑥
𝜕𝑣𝑥

𝜕𝑓𝑥
𝜕𝑣𝑦

𝜕𝑓𝑥
𝜕𝑣𝑧

𝜕𝑓𝑦

𝜕𝑣𝑥

𝜕𝑓𝑦

𝜕𝑣𝑦

𝜕𝑓𝑦

𝜕𝑣𝑧
𝜕𝑓𝑧
𝜕𝑣𝑥

𝜕𝑓𝑧
𝜕𝑣𝑦

𝜕𝑓𝑧
𝜕𝑣𝑧

 

Jacobian 

𝑓 = −𝑘 𝑝 − 𝑟
𝑝

𝑝
 

0 p 

0 p 

r 

f 

f 

Δ𝑓 
start end 

- = = 

Δ𝑝 = 

Force at spring 
endpoint 

Compressed Spring: 

Stretched Spring: 

How force changes 
as endpoint moves 
along spring direction: 

Δ𝑓

Δ𝑝
= −𝑘 



Derivatives of Force – Endpoint moves orthogonal 

0 
0 

p 

p 

f 

f 

Δ𝑝 

Δ𝑓 - = = 

f 

f 

Δ𝑝 

Δ𝑓 - = = 

Stretched: Compressed: 

𝑝𝑠𝑡𝑎𝑟𝑡 

𝑝𝑒𝑛𝑑 

Δ𝑓 = 

Δ𝑝 = 

How force changes 
as endpoint moves 
lateral to spring dir: 

Δ𝑓

Δ𝑝
= −𝑘 (1 −

𝑟

𝑝
) 

or 



Derivatives of Force – 3x3 Jacobian 

𝜕𝑓

𝜕𝑝
= −𝑘

𝑝⊗ 𝑝

𝑝 ∙ 𝑝
 + 𝐼 −

𝑝⊗ 𝑝

𝑝 ∙ 𝑝
1 −
𝑟

𝑝
 

Avoid compression 
singularity by 
clamping  r/||p|| . 

General change in Force for a 
given change in position: 

𝐴  Δ𝑣 = 𝑏  , 𝐴 = 𝐼 −
𝜕𝑓

𝜕𝑣
𝑑𝑡 −
𝜕𝑓

𝜕𝑝
𝑑𝑡2, 𝑏 = 𝑓 𝑑𝑡 +

𝜕𝑓

𝜕𝑝
𝑣 𝑑𝑡2 

Solve for Δ𝑣 in linear system: 

(note: slightly oversimplified) 



Implicit Integration 
Force Based  

 

Stiff Springs 

 

Realistic 
Behavior  

 

Responsive  

 

Convergence 

(Jitter Free) 



Summary 

Moving beyond triangles, 
dot and cross product: 

● Objects as 3D Solids  

● Convex parts 

● Spatial props 

● “2nd Year” Maths 

● Object Motion 

● Stiff systems 

 

 𝜇𝑚𝑚𝛼𝑟𝛾 

Variety of topics: 

Interacting with 3D Geometry 

Volume 
Integration 

Time 
Integration 



Q&A 

Stan Melax 

stan@melax.com 

 

mailto:stan@melax.com


Hand Tracking – if someone asks…. 

Tracking model Depth data Fit model 


