
Igniting the Spark:
Building Online Services for
Borderlands 2
 Jimmy Sieben @jimmys

Lead Programmer, Gearbox Software

A Word About Me
• I’ve been programming for 20+ years, 15 professionally
• Making games since 1995; at Gearbox for over 10 years
• Network Programming on multiple titles

• Halo: Combat Evolved (2003: PC)
• Brothers in Arms: Road to Hill 30 (2005: PC/Xbox)
• Brothers in Arms: Hell’s Highway (2008: PC/PS3/Xbox 360)
• Borderlands (2009: PC/PS3/Xbox 360)
• Borderlands 2 (2012: PC/PS3/Xbox 360)

A Word about Borderlands
• Introduced in 2009, sold over 6 million
• Coop Shooter Looter:

• FPS Action, Action-RPG Mechanics
• 4 player Cooperative, drop-in drop-out

• Borderlands 2 released in 2012, sold over 6 million
• Refined Shooter Looter, enhanced coop play
• Built SHiFT and Spark to connect to community
• A new initiative, something we’ve never done before

What is Spark?

• Spark: Our backend platform

• Internal name

• SHiFT: Our online service

• Customer-facing

Spark Features for Borderlands 2
• Archway

• SHiFT Account Signup, Platform account linking / authentication (Xbox LIVE, PSN,
Steam)

• Code Redemption & Rewards

• Discovery
• Dynamic configuration, per-environment and per-user
• Supports user populations for betas and testing

• Micropatch
• Data-driven hotfixes for rich game content
• Hard-coded or service-delivered (tied into Discovery)

• Leviathan
• Telemetry for gameplay
• Stats and Events with rich metadata

Why do this?
• Games are increasingly social, connected experiences
• AAA Games must go beyond the box

• Embrace the web and mobile, companion experiences
• Engage with players any time, anywhere
• Build the brand

• Ultimately, all about the customer
• Build the connection directly to the fans
• Enable the community to forge connections

• These are pillars of the next generation of games

Archway: Accounts and Authentication

• Single Sign On via ticket verification

• Xbox LIVE, PSN, and Steam supported

• Platform ID only comes from a valid
ticket

• This makes it difficult to impersonate a user

Spark: Single Sign-On Process

Game:

Acquire User Ticket
from Platform API

Game:

Send ticket to
Spark

Spark Backend:
Verify ticket

Spark: Reward Redemption

• Built a system of Offers and Entitlements
into our account system

• Created a code generator for 5x5 codes

SHiFT Code Example

Xbox 360 CBKBJ-3TXBH-55S3X-W6TT3-9BSZ5

PlayStation 3 WBKTB-CB6TT-X6WCJ-9T5BB-W5CBT

Steam WTCTB-HHX3C-39FJJ-JB333-FWWJZ

These are real-live codes, good for a Golden Key in Borderlands 2.
Redeem them when you get home 

SHiFT Code Reward Architecture

Offer

Offer Text Entitlements

Entitlement 1

GoldenKey

Consumable: 1

Entitlement 2

ShiftCustomization

Valentine’s Skin

Entitlement 3..n

Entitlement Name

Parameters

SHiFT Code Entitlement Architecture

Golden
Key

SHiFT Code Redemption Patterns

1 Shift
Code

Single
Redemption

Fixed
Redemption

(small)

Fixed
Redemption

(large)

Timed
Redemption

???

Spark: Micropatching
• Borderlands 2 is a rich data-driven game
• So much of the game is actually implemented in

data, how can that be updated on the fly?
• We built a system to package data updates into

Micropatches, deliver them via Spark
• This allows us to do balance tweaks, bug fixes,

live events by changing data implementation
• Authoring support in editor and backend tools

Spark: Telemetry

• How do players experience Borderlands 2?

• Drive Micropatches

• Provide business intelligence during launch

• Get visibility on exploits and cheats

• Feed into future development

How do you do this?
• What does a backend service look like?

• GDC talks
• HighScalability.com
• Amazon, Facebook, Microsoft, Google publications
• Phone a Friend

• How do you choose technology for Blue Sky?
• Know your priorities: What you like, Healthy ecosystem
• Rapidly evolving space
• Just choose and go – adaptability is key

The Challenge of AAA

Startups & mobile teams reference soft
launch, gradual run-up to inflection point
(John Mayer tweets about Words with Friends)

Day 0 Day 1 Day 30 Day 120

The Challenge of AAA

• AAA game launches are the opposite:
Vertical, long tail and plateau

Day 0 Day 1 Day 30 Day 120

Startup

AAA

Building the Service

• Research

• Build a team

• Start coding

• Ship it 2-3 years later?

• …. This isn’t easy. Is there a better way?

Building a Beta!

• We shipped BTest for Borderlands on Steam

• Beta test of our toughest feature: Telemetry

• Early visibility into key decisions and
questions for Authentication

• The focus of the first 10 months of Spark

• Shipped on 9/9/2011

BTest Postmortem: Test Everywhere

• We took our beta to different networks
• 2k and Gearbox corporate

• Home, with and without VPN

• QuakeCon!

• QuakeCon used a transparent Squid proxy
• Exposed a copy/paste bug in our HTTP code

• Oops, sending POST data on a GET!

BTest Postmortem: Crash Bug!
• Clock synchronization problem on server

• Game clients slowly drifted away from server
• Some crash reports early
• By Saturday morning, all clients crashing
• Workaround server side, instantly fixed crashes!

• Lessons
• Some test are vectors very difficult to predict
• Server tunability is incredibly valuable
• Tuesdays are the Best Days! (Not Friday!)

BTest Postmortem: Leaderboard
• We created a simple leaderboard to encourage players to

try the update
• It got slower and slower and slower, until updates were taking

over 45 minutes. Refactored queries and got updates down to 20
seconds

• Hacker submitted bogus data within hours of launch

• Lessons:
• Test with full data set early
• Try and break your assumptions
• Malice is the Norm

BTest Postmortem: Database Schema

• We didn’t know exactly what we wanted to ask, so
we built a very flexible, generic model
• Very quickly got too slow to work with
• How many enemies killed: 1 hr+ query times!
• Database size out of control
• Hard to plug in tools for visualization

• Lessons:
• Knowing what you want to do w/ data is crucial
• Data archival was very useful

BTest Postmortem: Capacity Planning

• Looked at Steam data in March

• Predictable decline to July Launch

March May July September

BTest Postmortem: Capacity Planning

• We shipped Btest in September…

• Steam Summer Sale!

• Borderlands 2 announced!

March May July September

Planned

Actual

BTest Postmortem Capacity Planning

• Scrambled to handle dramatically higher load

• Resized DBs, more servers, reconfiguration

• Lessons:

• Pay close attention and adjust constantly

• Be plugged in to PR and Business

• Be agile

Building another Beta!

• BTest was so helpful, we shipped another
beta!

• Launched December 13, 2011 (a Tuesday!)

Gearbox Moves into the Cloud

• BTest1 was hard to operate on shared hosting
• Capacity hard to adjust, and we didn’t get it right

• We knew we needed to design for more flexibility

• BTest2 Shipped on Amazon Web Services
• EC2, RDS, ELB

• Steep learning curve, but paid off…

• Didn’t get everything right…

BTest2 Postmortem: Holiday Stability

• We launched and were mostly stable
• However, problem Christmas evening!

• Our game was still selling, new people playing
• Queues were backing up, not severe
• A few days later, CPU is pegged!
• The Cloud to the rescue! Deploy more bigger!

• Lessons:
• Queue storage in cloud gave wiggle room
• It was actually pretty easy to recover from CPU peg
• Capacity planning still hard!

BTest2 Postmortem: Missed
Opportunities
• New to AWS, Deployed regular EC2 instances
• Skipped VPC

• This turned out to be a mistake
• More difficult to secure some resources like we wanted
• Had to build load balancing logic into app layer

• Lessons:
• Embrace as much of the feature set as you can
• Don’t be afraid to choose long term over short term
• Especially for a Beta!

Going Wide

• After shipping two iterations, had some
confidence in architecture

• Define the final feature set for the game
• Building an implementation plan is hard

• Include all stakeholders
• Navigate difficult policy waters
• Finish building the team and finish the code!

Discovery: Design for Tunability

• Created Discovery service which is central store
for service configuration

• If the client doesn’t get service info, disable it

• Flexibility is key:
• Simple key/value pairs, dirt-simple format

• Different configs for environments, titles, and platforms

Discovery: Design for Testability
• Endpoint URLs and Versions from Server

• Single point of entry hardcoded in code / platform config

• Client overrides for configuration via INI and
command line
• Allowed developers to work offline
• Allowed QA to customize things for testing
• Supported even in final builds
• Enabled internal and external beta scenarios!

Design for Bad User Behaviors
• Be conscious of user behaviors which can harm the service

• Signup / Signin
• Code Redemption

• We implemented client side throttles
• Prevent button mashing denial of service attacks

• Don’t create incentives for users to be bad
• Signup/delete path not optimized for churn
• Signup rewards once per platform ID, ever

Load Testing Difficulties
• We didn’t fully understand how ELB worked at

first
• Amazon’s documents are good, but easy to overlook
• Turn off DNS caching
• Prewarming critical

• JMeter limitations led us to write custom scripts
• Costs can get out of hand! Watch carefully!

• Should have invested more in automation

Launching Borderlands 2

• Borderlands 2 launch: September 18, 2012

• The team was all set in the war room

• Night and day shift established for launch

• Latest capacity info from industry friends
and experts projected we would survive

• But still, wave of terror washed over me a T-6 hrs

So?, What Happened

• Nothing!

• Well, almost. At least at first.
• Email queues backed up, deployed more workers

• Slowing turning up the dials on telemetry

• Watching the numbers, generally OK

• Went to sleep happy!

• A few things did come up in the following days…

Day 1: Bad Query
Beware tolower() query on indexed columns
Our testing missed this because it only shows on a loaded database

Day 2: Keeping Telemetry Going

• Launch week capacity was tough to manage

• We wanted to keep costs in check, but had
not implemented AWS Auto-Scaling Groups

• Manually add/remove instances at set times

Day 2: Keeping Telemetry Going

Day 2: Operation Mistake Reveals Bug

• Made a mistake pushing change to Redis

• Lots of users kicked off service accidentally

• Many of them didn’t come back automatically!

Day 2: Telemetry Bug

Day 2: Telemetry Bug

• Actually found 5 different bugs
• Reauthentication is a tricky process to test

• Bugs in each layer involved in process

• Hard to test all the interactions in the system

• Fixing it was also a challenge
• Coordinate operations, dev, production, QA

• More on that later…

Day 3: Bad Build

• An early Steam patch was released with bad
configuration, pointing at test environment!

• Fortunately, just after patch release we took
down test environment for maintenance.

• Deployed a workaround on server frontdoor
• Could not bring it back up until all users

were patched

Day 3: Bad Build Continues!
• It wasn’t just our main SKU that had this problem
• We released that code to the Russian SKU as well,

which had a delayed update plan
• It took almost 3 weeks to deploy that patch
• Still not out of the woods.

• Unpatched users still out there
• Pirated copies? Users that didn’t update?

• Lesson: be very careful with configuration!

SHiFT Codes!

• A few days into launch, we were stable
enough to start using our SHiFT Codes
• Randy Pitchford (@DuvalMagic) got things

started with some quick tests

• Engaged directly with devops team to
measure results

• Got a little TOO engaged…

SHiFT Codes: Chaos

SHiFT Codes: Chaos
• While looking for real-time code redemption results, I

issued a bad query that impacted some monitoring
• Took most of the afternoon and evening to recover

• Redis failover scripts did not work as expected
• Restart monitoring node, stabilize cluster
• Move some monitoring functionality to new node

• Lessons:
• Try not to intermingle monitoring for different components
• Be extra careful querying 100MM record datasets!

SHiFT Codes: Optimizations

• During week 2, we used a new type of
code that was active for a period of time

• This allowed us to build a social
engagement strategy around code
redemption times

• Essentially created Flash Mobs for SHiFT

SHiFT Codes: Optimizations

SHiFT Codes: Optimizations

SHiFT Codes: Optimizations

SHiFT Codes: Optimizations

SHiFT Codes: Optimizations
• Linear table growth as redemptions increase

• By the second weekend, there were many many rows
• Lookups on this table were missing an index
• Didn’t catch this growth over time in testing

• Query for entitlement and offer info not cached
• This data doesn’t change during a code drop
• Missed this: requires large table and flash mob
• Easy to cache in app layer to reduce DB pressure

SHiFT Codes: Unexpected Behavior
Telemetry traffic pattern changes when a code drops
Users Save & Exit game, wait to redeem in menu
Causes spike and lull in telemetry traffic

SHiFT Codes: Unexpected Behavior

• We didn’t expect this behavior
• Fortunately this didn’t cause a big problem
• Had extra capacity on hand for launch window

• Lessons
• Carefully think through interactions of systems
• However, must recognize that not all user behaviors

can be predicted
• Be prepared for surprises

The Challenge of AAA: DLC

• Successful AAA games must have a DLC plan

• Borderlands 2 successfully launched 5 packs
• Week 4: Gaige: Mechromancer character class

• Week 5: Captain Scarlett & Her Pirate’s Booty

• Week 10: Mr Torgue’s Campaign of Carnage

• Week 17: Sir Hammerlock’s Big Game Hunt

• Week 18: Domination, Madness, and Supremacy

The Challenge of AAA: DLC
• This put a lot of pressure on live team

• New Features, bug fixes, balance tweaks
• Packaging and builds

• Meanwhile Spark team had challenges too
• Improve service manageability, security patches, keep it running
• Optimize server performance and costs

• Lesson: Very difficult to do things post-launch
• Plan ahead for anything you need in the first 10 weeks
• Lots of slack in schedule, communicate with dev

What Didn’t Happen?

What Didn’t Happen?

• Spark performed above expectations

• No downtime in launch window

• User-facing components didn’t buckle

• Team wasn’t killed keeping it going

Team Wasn’t Killed Keeping it Going

Why Did We Succeed?

• Great team of smart, passionate, and
committed people

• Spent adequate time testing user-facing (10
weeks from certification to launch)

• The cloud: over provision, then scale back

• We launched 2 betas

What’s Next?

• We originally developed Spark for a single
title, Borderlands 2
• Felt that constraining scope was key to success

• SHiFT was so successful, we shipped it
again!
• Aliens: Colonial Marines launched February 2013
• Integrated accounts, rewards, and built new

rewards for SHiFT

Getting Spark to 1.0

• Finish integrating Amazon features: VPC & ASG

• Optimize costs around known traffic patterns

• Enhanced monitoring and deployment tools

• … And beyond!

• Find new ways to use the platform!

• Experiment with new ways to engage with fans

Final Thoughts

• This is really important for next-gen

• Capacity planning is very hard to do

• Coped by being agile and relying on the cloud

• Ship early and often

• Possible even for AAA Games!

Jimmy Sieben @jimmys
jimmy.sieben@gearboxsoftware.com

