
© Copyright 2013 Denim Group – All Rights Reserved

Smart Phones !
Dumb Apps!
!
How Bad Guys View Your Mobile Apps!
!
Dan Cornell!
CTO, Denim Group!
@danielcornell

© Copyright 2013 Denim Group – All Rights Reserved

Denim Group Background

•  Professional services firm that builds & secures enterprise applications
–  External application assessments

•  Web, mobile, and cloud
–  Software development lifecycle development (SDLC) consulting

•  Classroom and e-Learning for PCI compliance
•  Secure development services:

–  Secure .NET and Java application development
–  Post-assessment remediation

•  Deep penetration in Energy, Financial Services, Banking, Insurance,
Healthcare and Defense market sectors

•  Customer base spans Fortune 500
•  Contributes to industry best practices through the Open Web

Application Security Project (OWASP)

© Copyright 2013 Denim Group – All Rights Reserved

Dan Cornell
•  Dan Cornell, founder and CTO of Denim Group

•  Software developer by background
(Java, .NET, etc..)

•  OWASP San Antonio

•  15 years experience in software architecture,
development and security

•  Heads Denim Group’s application security
team

© Copyright 2013 Denim Group – All Rights Reserved

Agenda

•  Generic Smartphone Threat Model
•  Sample Application
•  What an Attacker Sees (Android Edition)
•  What About iPhones/iPads?
•  Special Topic: Browser URL handling
•  Closing Thoughts
•  Questions

© Copyright 2013 Denim Group – All Rights Reserved

Tradeoffs: Value versus Risk
•  Mobile applications can create tremendous value for

organizations
–  New classes of applications utilizing mobile capabilities: GPS,

camera, etc..
–  Innovating applications for employees and customers

•  Mobile devices and mobile applications can create
tremendous risks

–  Sensitive data inevitably stored on the device (email, contacts)
–  Connect to a lot of untrusted networks (carrier, WiFi)

•  Most developers are not trained to develop secure
applications

–  Fact of life, but slowing getting better

•  Most developers are new to creating mobile applications
–  Different platforms have different security characteristics and

capabilities

© Copyright 2013 Denim Group – All Rights Reserved

Smart Phones, Dumb Apps

•  Lots of media focus on device and platform security
–  Important because successful attacks give tremendous attacker

leverage

•  Most organizations:
–  Accept realities of device and platform security
–  Concerned about the security of their custom applications
–  Concerned about sensitive data on the device because of their apps
–  Concerned about network-available resources that support their

apps

•  Who has smartphone application deployed for customers?

•  Who has had smartphone applications deployed without
their knowledge?

–  *$!%$# marketing department…

© Copyright 2013 Denim Group – All Rights Reserved

Generic Mobile Application Threat Model

© Copyright 2013 Denim Group – All Rights Reserved

Some Assumptions for Developers

•  Smartphone applications are essentially thick-client
applications

–  That people carry in their pockets
–  And drop in toilets
–  And put on eBay when the new iPhone comes out
–  And leave on airplanes
–  And so on…

•  Attackers will be able to access:
–  Target user (victim) devices
–  Your application binaries

•  What else should you assume they know or will find out?

Let’s Take Apart Some Apps

●  Pandemobium Stock Trader Application
•  Android and iOS versions

•  Functionality
–  Log in
–  Track stock tips
–  Make stock trades
–  Get stock tips
–  Share stock tips

© Copyright 2013 Denim Group – All Rights Reserved

© Copyright 2013 Denim Group – All Rights Reserved

Pandemobium Stock Trader Application

•  We will use as an example through the class

•  Available for free online
–  https://code.google.com/p/pandemobium/
–  Look for updates! Share with your friends!

•  Components:
–  iPhone application
–  Android application
–  Supporting web services (Java/JSP web application)
–  User manual (HTML)
–  Vulnerability list (HTML)

© Copyright 2013 Denim Group – All Rights Reserved

Pandemobium Stock Trader Application

© Copyright 2013 Denim Group – All Rights Reserved

So What Does a Bad Guy See?
(Android Edition)
•  Install the application onto a device
•  Root the device
•  Pull the application’s APK file onto a workstation for

analysis

•  APK files are ZIP files
•  They contain:

–  AndroidManifest.xml
–  Other binary XML files in res/
–  classes.dex DEX binary code

© Copyright 2013 Denim Group – All Rights Reserved

Generic Android Application Threat
Model

What’s Up With My XML Files?

•  Binary encoding

•  Use axml2xml.pl to
convert them to text

http://code.google.com/p/android-random/downloads/detail?name=axml2xml.pl

© Copyright 2013 Denim Group – All Rights Reserved

Much Better

•  Now we see:
–  Screens in application
–  Permissions required

by the application
–  Intents applications is

registered to consume
–  And so on

© Copyright 2013 Denim Group – All Rights Reserved

© Copyright 2013 Denim Group – All Rights Reserved

Do the Same Thing With the
Rest of Them
●  Recurse through the res/ subdirectory
•  UI layouts, other resources

© Copyright 2013 Denim Group – All Rights Reserved

What About the Code?

•  All of it is stuffed in classes.dex

•  Android phones use DEX rather than Java bytecodes
–  Register-based virtual machine rather than stack-based virtual

machine

•  Options:
–  Look at DEX assembly via de-dexing
–  Convert to Java bytecode and then to Java source code

De-Dex to See DEX Assembly

•  DEX bytecode ~=
Java bytecode

•  All code goes in one
file

•  Disassemble to DEX
assembly with dedexer

http://dedexer.sourceforge.net/

© Copyright 2013 Denim Group – All Rights Reserved

Lots of Information

•  Like the fun-fun world
of Java disassembly
and decompilation
–  (We’ll get to the DEX

decompilation in a
moment)

•  LOTS of information
available

© Copyright 2013 Denim Group – All Rights Reserved

© Copyright 2013 Denim Group – All Rights Reserved

But Can I Decompile to Java?

•  Yes
•  We
•  Can

•  Convert to Java bytecodes with dex2jar
–  http://code.google.com/p/dex2jar/
–  (Now you can run static analysis tools like Findbugs)

•  Convert to Java source code with your favorite Java
decompiler

–  Everyone has a favorite Java decompiler, right?

© Copyright 2013 Denim Group – All Rights Reserved

DEX Assembly Versus
Java Source Code
•  De-DEXing works pretty reliably
•  DEX assembly is easy to parse with grep
•  DEX assembly is reasonably easy to manually analyze

•  Java decompilation works most of the time
•  Java source code can be tricky to parse with grep
•  Java source code is very easy to manually analyze

•  Verdict:
–  Do both!
–  Grep through DEX assembly to identify starting points for analysis
–  Analyze Java source in detail

© Copyright 2013 Denim Group – All Rights Reserved

So What Did We Learn?

•  Look at the string constants
–  URLs, hostnames, web paths

•  Look at the de-DEXed assembly
–  Method calls
–  Data flow

•  Developers: BAD NEWS
–  The bad guys have all your code
–  They might understand your app better than you
–  How much sensitive intellectual property do you want to embed in

your mobile application now?

© Copyright 2013 Denim Group – All Rights Reserved

Is There Sensitive Data On the Device?

•  Look at the disassemled DEX code

•  Grep for “File”

© Copyright 2013 Denim Group – All Rights Reserved

What About Java Source Code?

•  Get the source code with JD-Gui
–  http://java.decompiler.free.fr/

© Copyright 2013 Denim Group – All Rights Reserved

Look for Files With Bad Permissions

•  Look for file open operations using
–  Context.MODE_WORLD_READABLE
–  (translates to “1”)

© Copyright 2013 Denim Group – All Rights Reserved

Next: What Is On the Server-Side

•  To access sensitive data on a device:
–  Steal a device
–  Want more data?
–  Steal another device

•  To access sensitive data from web services
–  Attack the web service

•  String constants for URLs, hostnames, paths

•  Examples:
–  3rd party web services
–  Enterprise web services

© Copyright 2013 Denim Group – All Rights Reserved

So Now What?

•  3rd Party Web Services
–  Is data being treated as untrusted?
–  Google promised to “not be evil”

•  For everyone else…

•  Enterprise Web Services
–  Did you know these were deployed?
–  Have these been tested for possible security flaws?
–  Stealing records en-masse is preferable to stealing them one-at-a-

time

© Copyright 2013 Denim Group – All Rights Reserved

Web Services Example

•  Trumped up example, but based on real life

•  Given a web services endpoint, what will a bad guy do?

•  Sequence:
–  Request a junk method “abcd”
–  Get a “No method ‘abcd’ available”
–  Request a method “<script>alert(‘hi’);</script>”
–  Hilarity ensues…

© Copyright 2013 Denim Group – All Rights Reserved

What Is Wrong With the
Example Application?
•  Sensitive data stored on the device unprotected
•  Trusts data from 3rd party web services
•  Exposes enterprise web services to attackers
•  Enterprise web services vulnerable to reflected XSS

attacks
•  And so on…

•  This is a trumped-up example with concentrated
vulnerabilities, but…

•  All of these reflect real-world examples of vulnerabilities
–  Public breaches
–  Application assessments

© Copyright 2013 Denim Group – All Rights Reserved

What About iPhones/iPads?

•  Objective-C compiled to ARMv6, ARMv7 machine code
–  Not as fun (easy) as Java compiled to DEX bytecode
–  But … subject to buffer overflows, memory handling issues, other

native code fun

•  Apps from iTunes Store
–  Encrypted
–  Used to be “easy” (well, mechanical) to break encryption with a

jailbroken phone and a debugger
–  Now trickier (but likely not insurmountable)
–  And the default apps are not encrypted…

© Copyright 2013 Denim Group – All Rights Reserved

Run “strings” on the Binary

•  Web services endpoints: URLs, hostnames, paths

•  Objective-C calling conventions:

[myThing doStuff:a second:b third:c];!

becomes

obj_msgsend(myThing, “doStuff:second:third:”, a, b, c);!

© Copyright 2013 Denim Group – All Rights Reserved

Run “otool” on the Binary

●  otool –l <MyApp>
●  View the load commands
●  Segment info, encryption info, libraries in use

●  otool –t –v <MyApp>
●  Disassemble the text segment to ARM assembly
●  If run on an encrypted application you get garbage

●  otool –o <MyApp>
●  Print the Objective-C segment

●  And so on…

© Copyright 2013 Denim Group – All Rights Reserved

Net Result for iPhone/iPad

•  More obscure
–  But does that mean more secure?

•  Can still retrieve a tremendous amount of information
•  Can still observe a running application

•  “Security” based on obscurity is not durable

© Copyright 2013 Denim Group – All Rights Reserved

Mobile Browser Content Handling
•  Many mobile platforms allow you to designate applications to handle

content found in web pages
–  By URI protocol
–  By content type

•  Provide a “premium” experience for users who have the target app
installed

•  Examples:
–  tel:// URLs initiating phone calls
–  maps:// URLs to display maps

iPhone/iPad URL Schemes

●  iOS applications can
be set up to “handle”
certain URL schemes

●  Defined in the
application’s Info.plist

●  Binary format:
annoying

© Copyright 2013 Denim Group – All Rights Reserved

Decoding plist Files
●  plutil -convert xml1 Info.plist

●  Much nicer

© Copyright 2013 Denim Group – All Rights Reserved

© Copyright 2013 Denim Group – All Rights Reserved

iOS URL Handlers

●  XPath: Look for:
/plist/dict/array/dict[key='CFBundleURLSchemes']/array/

string
●  Now you know the URL Schemes the app handles

●  SANS blog post on this issue in iOS:
●  http://software-security.sans.org/blog/2010/11/08/insecure-handling-

url-schemes-apples-ios/?utm_source%253Drss%2526utm_medium
%253Drss%2526utm_campaign%253Dinsecure-handling-url-
schemes-apples-ios

●  Too long to type? http://bit.ly/ezqdK9

© Copyright 2013 Denim Group – All Rights Reserved

Android Intents

•  Intents are facilities for late-binding messaging between
applications

–  http://developer.android.com/guide/topics/intents/intents-filters.html

•  One use is to allow applications to register to receive
messages from the Browser when certain types of content
are received

–  Like iOS URL Schemes but an even more comprehensive IPC
mechanism

© Copyright 2013 Denim Group – All Rights Reserved

Intent Filter Example
<intent-filter>
 <action android:name="android.intent.action.VIEW" />

 <category
android:name="android.intent.category.DEFAULT" />

 <category
android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="danco" />

</intent-filter>

•  Action: What to do?
•  Data: Scheme is URI “protocol” to

handle
•  Category BROWSABLE: Allow this

Action to be initiated by the browser

Intent Filter Demo – Manual Launch, HTML Page

© Copyright 2013 Denim Group – All Rights Reserved

Intent Filter Demo – Anchor Launch, IFrame
Launch

© Copyright 2013 Denim Group – All Rights Reserved

© Copyright 2013 Denim Group – All Rights Reserved

I’m a Security Tester. Why Do I Care?

•  URL handlers are remotely-accessible attack surface

•  This is a way for you to “reach out and touch”
applications installed on a device if you can get a user to
navigate to a malicious page

•  Send in arbitrary URLs via links or (easier) embedded
IFRAMEs

•  Example: iOS Skype application used to automatically
launch the Skype application and initiate a call when it
encountered a skype:// URL

–  Apple’s native Phone handle for tel:// URLs would confirm before a
call was made

© Copyright 2013 Denim Group – All Rights Reserved

I’m a Developer. Why Do I Care?
•  See the previous slide. Bad guys care. So should you.

Please.

•  Content passed in via these handlers must be treated as
untrusted

–  Positively validate
–  Enforce proper logic restrictions

•  All:
–  Should a malicious web page be able to cause this behavior?

•  Make phone call, transmit location, take photo, start audio recording, etc.

•  iOS:
–  Validate inputs to handleOpenURL: message

•  Android:
–  Validate data brought in from Action.getIntent() method

© Copyright 2013 Denim Group – All Rights Reserved

So What Should Developers Do?

•  Threat model your smartphone applications
–  More complicated architectures -> more opportunities for problems

•  Watch what you store on the device
–  May have PCI, HIPAA implications

•  Be careful consuming 3rd party services
–  Who do you love? Who do you trust?

•  Be careful deploying enterprise web services
–  Very attractive target for bad guys
–  Often deployed “under the radar”

© Copyright 2013 Denim Group – All Rights Reserved

Secure Mobile Development Reference

•  Platform-specific recommendations
•  Key topic areas

•  Provide specific, proscriptive guidance to developers
building mobile applications

© Copyright 2013 Denim Group – All Rights Reserved

Specific Platforms

●  iOS (iPhone, iPad)
●  Android
●  Blackberry (in progress)
●  Windows Phone 7 (in progress)

−  Windows Mobile 6.5 (?)

●  Symbian (?)
●  Others (?)

●  Will be guided by demand, which is focused by new
development activity

© Copyright 2013 Denim Group – All Rights Reserved

Topics Areas

•  Topic Areas
–  Overview of Application Development
–  Overview of Secure Development
–  Defeating Platform Environment Restrictions
–  Installing Applications
–  Application Permissions Model
–  Local Storage
–  Encryption APIs
–  Network Communications
–  Protecting Network Communications
–  Native Code Execution
–  Application Licensing and Payments
–  Browser URL Handling

© Copyright 2013 Denim Group – All Rights Reserved

So What Should Security People Do?

•  Find out about smartphone projects
–  Not always done by your usual development teams
–  R&D, “Office of the CTO,” Marketing

•  Assess the security implications of smartphone
applications

–  What data is stored on the device?
–  What services are you consuming?
–  Are new enterprise services being deployed to support the

application?

© Copyright 2013 Denim Group – All Rights Reserved

Resources

•  axml2xml.pl (Convert Android XML files to normal XML)
–  http://code.google.com/p/android-random/downloads/detail?

name=axml2xml.pl

•  Dedexer (Convert DEX bytecodes into DEX assembler)
–  http://dedexer.sourceforge.net/

•  Dex2jar (Convert DEX bytecode in Java bytecode)
–  http://code.google.com/p/dex2jar/

•  JD-GUI (Convert Java bytecode to Java source code)
–  http://java.decompiler.free.fr/

•  otool (Get information about iPhone binaries)
–  http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/

man1/otool.1.html

© Copyright 2013 Denim Group – All Rights Reserved

Online

•  Code, slides and videos online:

www.smartphonesdumbapps.com

© Copyright 2013 Denim Group – All Rights Reserved

Questions?

Dan Cornell
dan@denimgroup.com
Twitter: @danielcornell

www.denimgroup.com
blog.denimgroup.com
(210) 572-4400

