
Presenter
Presentation Notes
Hi everyone,It’s good to see you at the first EVER GDC Next!I’m Luc, CTO of Frima, a 350 people company based in Quebec city and since I needed a model for our company Cap and someone to show the devices, here is JP.Today, we’ll share with you our porting experiences for two games. We decided to target the SHIELD and the OUYA.Since our company vision is based on delivering digital experiences on every possible screens, we tough targeting them was worth a shot.Here JP is presenting you the beautiful shield powered by a Tegra4 nVidia GPU and there the OUYA, powered by a Tegra3 GPU.Thank you JP, that will be all…..

Takeaways

● Micro-console/handheld porting efficiency
● Harness the new hardware
● Multiplayer solutions on Android

Presenter
Presentation Notes
Alright, we want you to take away from this talk that those micro-consoles are efficient for porting existing games using today’s engines and technology.Also, because today’s hardware move faster than today’s engines or software, you might not be able to harness some of the new features of those mobile devices. We’ll give you a couple of tricks to bypass those limits.And finally, we’ll present two multiplayer solutions that worked well on Android.

Lexicon

● Android-based gaming consoles mobile or
not, handheld or with a controller

● Micro-console
● Handheld
● Android based console
● Mobile device

● Acronym dumping

Presenter
Presentation Notes
Before we get started, we wanted to point out that instead of saying Android-based gaming consoles mobile or not, handheld or with a controller. We will use one of these terms throughout our presentation. Micro-consoleHandheldAndroid based consoleMobile deviceThey all mean, one or any of OUYA, GameStick, SHIELD…Also, during our talk, we will throw acronyms here and there. Don’t worry if you don’t know what they mean, we’ll quickly explain it when it’s important.

Presenter
Presentation Notes
Why should we (or you) consider the micro-console device market? Look at the roadmap for SHIELD or other mobile devices running on Tegra.[PAUSE]You can see that over a span of 4 years, the performance will get a 100 fold boost.Even the next generation of Tegra will support a full fledge openGL 4.3 implementation and even CUDA!

" It is, in fact, 140 times more powerful than the first Cray
supercomputer, or 1.6 times more powerful than a PlayStation 3."

Presenter
Presentation Notes
Another way to look at it is to compare them with current hardware.[PAUSE]On this graph, you can see the recent-enough iPad 4 and then on the side, the PS3 and desktop graphic cards.[PAUSE]Performance is not the only pillar of success in a game but think about twice the power of a PS3 that you can carry with you! And this will be possible early next year!

The Future of Micro console

● PCmag.com
● 4/5 “most impressive handheld gaming

systems”
● Slash gear
● “What we’ve got here is a sort of perfect

storm for benchmark butt-kicking.”

Presenter
Presentation Notes
Who knows what the future of micro-console will bring, but so far we saw several good reviews on the SHIELD.But we need to wait and see on the adoption rate to learn more about their progression in the market.

Our Experiments

● Lightbringer
● Web and Mobile
● Adobe Flash (AIR)

● Zombie Tycoon 2
● PS3 and VITA
● Unreal 3

Presenter
Presentation Notes
What made this talk interesting, is that, in order to provide you with valid results on porting games to those new gaming consoles. We had the opportunity to work at the same time on two projects aiming those devices.Our first port was related to our Lightbringer game, an awesome Facebook and Mobile game, with cross-play coop multiplayer.Our second game, is called Zombie Tycoon 2, a cool cross-play RTS on PS3 and VITA.We would like to point out that both of these are created on different engines and technologies, making our porting experiences much more fun.

AIR

● What is AIR?
● As of October, 2013,:
● 120,000 distinct applications
● >140M downloads since July

Presenter
Presentation Notes
Let’s quickly peek into the technologies we used on those two ports.First, What is AIR?AIR is like the Flash player packaged on mobile devices, PC and Mac.[CLICK]Adobe’s data indicates, that as of last month, there were 120 thousands unique apps made with AIR 3.8 and up.The data is recent and only includes apps made with that version even though AIR 3 was released 2 years ago.[CLICK]Here you can see a sample of some of the games that were made with AIR.

Unreal

● What is Unreal?

Presenter
Presentation Notes
Now, what is Unreal. Well, I don’t think I have to tell, you but if I were to do it.[CLICK]Here’s a partial list of unreal titles release in the last year and a half.I’m sure like us, that you’ve already played some if not a lot of them.[CLICK]And were proud to have two titles in this listSo in brief it’s one of the top AAA gaming engine out there.

Differences between platforms
 Xbox 360 PS3 Wii SHIELD OUYA iPhone4s Nexus 7 iPad mini VITA

CPU PowerPC
3.2 Ghz (3
cores)

Cell 3.2
with 7
SPE

PowerPC
729 Mhz

1.9Ghz A15
Quad
Tegra4

1.7GHz
quad A9

Dual
800Mhz A9

1.2 Tegra 3
Quad

Dual core A5
1Ghz

2Ghz
Quad
A9

GPU 500 Mhz
ATI

550 Mhz
nvidia

243 Mhz
ATI

72 cores
Tegra4

Tegra3 PowerVR
SGX543

416 Mhz
nvidia

PowerVR
SGX543MP2

SGX543

Memory 512MB
GDDR3,
10MB
EDRAM

256MB
XDR,
256MB
GDDR3

24MB
SRAM,
64MB
GDDR3,
3MB
GPU

2GB 1GB 512 MB 1GB 512MB 512+128

Disk 20-320GB 512MB 16GB 8GB 8GB+ 8GB 16-64GB None

Presenter
Presentation Notes
Since we were targeting a wide variety of gaming devices, we thought it would be interesting to provide an overview of the technical differences between each platforms, so we gathered numbers from the internets.And this is what you get. Please take a moment to write this down as we will have a quiz at the end of this talk…… or NOT!

Differences between platforms

Presenter
Presentation Notes
Seriously, we are a bit unconvinced by all those raw numbers we see in hardware specification sheets. What we think is important is to simply create the best game with what we have.However, we still need a general idea on the performance in order to adjust our ports accordingly.So here is our digested way to see things in a high-level fashion.[Show Graph]Our not so scientific method consist of running the game on each platforms for 1 minute and registering the average FPS or frames per second. There is no actual scale, higher and greener is simply better.But rest assured, we ran the tests twice!

This slide was intentionally left here
by mistake

Presenter
Presentation Notes
JPLUC

Presenter
Presentation Notes
Just to set expectation right, this transition is probably the best transition we’ll have.As you will see, this is not our strong suit.For those that have been stalking us in the last 2 years, you’ve seen some kind of progression in a game called Lightbringers in our talks.The last of it, was In May, at Adobe Max, we’ve discussed our production pipeline and issues making a game in Flash and AIR for Mobile.We had to bribe our marketing department for this, since it was never shown publicly before, so here’s the first half of our newest trailer.

Porting LB

● Trying new consoles (First builds)
● SHIELD
● Profiling and Stepping up
● Bypassing limitations
● Post process

● OUYA details

Presenter
Presentation Notes
We hope you liked it, it is our first high resolution game trailer, and were exited about it , the full version will be available for the official launch by end of year.In the mean time, If you stick to the end, we will provide some links to play it next week for the soft launch….In the next couple of slides I will show you our first iteration to get the game running on the shield and the ouya.Ill demonstrate to you how the shield is more powerfull than the nexus, and how we bypassed technical API limitations to step up the visual on the game.And then, Captain Luc will focus more on the OUYA.

Trying new consoles

● Current:
● Web
● Nexus 7 (First generation)
● iPad 2

● Goal:
● OUYA
● SHIELD

Presenter
Presentation Notes
But first, you need to know that on top of the Web version, our minimum requirement for this game was a Nexus 7 and an iPad2. From that, we wanted to try out those new consoles. Now as it was using AIR, we thought it would be straightforward since both are Android-based.

OUYA

● Same APK (Android Application Package)
● Missing Controller
● Small touchpad
● FPS: 15

Presenter
Presentation Notes
And for most of it, it was! To port this game on the OUYA, we simply took the APK, the android application package from the nexus build and installed it on the ouya.Obviously that game was not designed to work with a controller so we were reduced to use the tiny touchpad, but it worked!Now Our initial test shows deceiving FPS, we were expecting result similar to the nexus 7. Commander Luc will get back later on what we did about that.

SHIELD

● Same APK
● Controller support
● Touch screen
● FPS: 60

Presenter
Presentation Notes
As for the shield, it was much more complicated.Here’s what we did…We took the same APK, and we installed it on the SHIELD.And it worked!Again, no controller support, but with it’s touch screen we could play the game quite well.And that FPS, well, was nice

Controller

● Flash.ui.GameInput
● Air 3.7
● Action mapping
● Bug

● Fix : First frame variable
● Fix : Static variable

● Lag in input
● 24 FPS on the stage

1. http://zehfernando.com/2013/adobe-air-gameinput-pitfalls/

Presenter
Presentation Notes
For that first build to be completed on both consoles we at least had to implement the controller.Using the AIR GameInput api introduced in version 3.7 was easy enough. You really just implement the class, the listener and your good to go.However the game was built around touchscreen and mouse control, this meant that some of the game logic was implemented into the interface. Yeah, I know bad habit. So, We had to change some of those case to properly map them to a controller.[CLICK]Now, even though we did not experience this problem at first, it most likely appeared after our latest flash update. if you don’t create your GameInput in the first frame, whether calling it directly or using a static variable, the game input manager won’t work properly.Also, after our visual enhancement, the game input started to lag drastically, even though game run at over 30 fps. To fix that we forced the stage2d to run at 24 fps giving the API more time to process the input. And that seams to fix the issue.

Profiling on SHIELD

Presenter
Presentation Notes
Now that we have a controller, we can take time to do some profiling, This is a screen using adobe scout that make us realized that we had about 30% extra CPU to work with when running the nexus build on the shield.

SHIELD(T4) vs T3

● Nexus : 6 Instructions
● Shield : 48 Instructions
● PCF
● MRT
● HDR
● OMG
● LOL

• Vertex Shader 8x
• Fragment ALU 8x
• Pixel Rate 2.6x
• Texture Rate 2.6x
• Memory Rate 2.3x
• Z-Kill Rate 1.3x
• Triangle Rate 1.3x

Presenter
Presentation Notes
The technical reason for that spare power, is that the SHIELD is awesome…….As you can see here, comparing the SHIELD’s T4 with a T3, you can see that they are not in the same league. Someplace it can be as much as 8 times better.[CLICK]But to make a summary, the nexus running on T3 could realistically have an average of 6 instructions per fragment to keep decent FPS, where the SHIELD could have 48.On top of that, it supports PCF, MRT, HDR, OMG, LOL, things like that..

Step up ideas

● Upgrade meshes and textures (Triangle Rate)
● FX, Ambiance (Pixel Rate)
● Dynamic shadow, Lighting (MRT, PCF)
● Creep 1 (CPU)

● Post-process stuff (ALU/Texture/Pixel rate)

1. http://tinyurl.com/mmvpp7c

Presenter
Presentation Notes
So with that in mind we could add theseLike upgrading the mesh because of the triangle rate, Or add Pixel heavy FX and ambiance, Feature like the dynamic shadow and lighting becomes more feasible with MRT and PCFSome CPU heavy process could be added like in our case the Marching square algorithm uses for our creep.OR more stuff….

Bypassing AIR/Stage3D limitations

● Native extension
● Hook OpenGL
● ELF-Hook

● Support advanced feature
● Experimental pipeline

Presenter
Presentation Notes
Some of these features needed hardware capabilities that Adobe’s Stage3D doesn't support.Now in order to get access to those, we had to bypass Stage3D limitations.With the help of an open source library called ELF-Hook we were able to… [well…] hook to the OpenGL context using a Native Extension and to our surprise, it worked!So it allowed us to intercept and change , or directly call the OpenGL API and thus supporting advanced featuresHowever, this comes with a very experimental pipeline that the production teams tend not to like.

Bypassing AIR/Stage3D limitations

originalUseProgram = elf_hook(fullpath, base, (void*)MyglUseProgram);

void MyglUseProgram(GLuint program) {

GLuint progToUse = programList.find(program); >

originalUseProgram (progToUse); }

Presenter
Presentation Notes
There is an urban legend that you need to use JAVA in order to make native extensions for Android or ObjectiveC on a mac for iOS. As we don’t like multiplying programming language and computers, we investigated.Turns out this is not true. Here’s an example in C++ where you can hook to the OpenGL context to redirect a call made by Stage3D and replacing the shader by a custom, more advanced one.A word of advice, this code block was heavily modified to fit in this slide, it won’t work as is.

What can be done this way?

● LowP
● Instruction count
● Branching
● MRT
● Aliasing (AA)

Presenter
Presentation Notes
With this in place, we can simply ignore Stage3D’s limitations and make it do what we want!So instead for pleading for new features, you can just implement them, you’re welcome adobe.For instance, stage3d runs all its shader using high precision variable, by replacing some of them with low precision you can increase performance.The adobe shading language or AGAL, come with limited branching capabilities and a small limit in instructions, about 200.When injecting your own shader you can bypass this. You can do loop, branching, use more instructions. However, keep in mind that all of this is platform specific, you’ll need to query the device for hardware capabilities, and it won’t work on the browsers, it’s AIR only.

Post-process

● Depth of field
● Bloom
● Downsizing
● Convolution blur

● FXAA
● Crytek Sharpening

Presenter
Presentation Notes
Enough with the technique, lets see the results. With the extra power on the SHIELD, we added Depth of Fieldwe added post process bloomFXAAAnd we added post process Image sharpening

Demo

Presenter
Presentation Notes
In this screen, the depth on the right side is more visible using the DOF effect.

Demo

Presenter
Presentation Notes
The Bloom in this shot, accentuate the light effect on the nexus.

Demo

Presenter
Presentation Notes
Here we have a Close up view of the glow effect that highlight the armor of the avatar, something great for a lightbringers.

Demo

Presenter
Presentation Notes
On mobile using stage3d, the hardware anti aliasing is not available, we could have used a native extension but we already had a post process FXAA. From left to center we have without and with fxaa, and on the right side, we added sharpening on top.

Demo

Presenter
Presentation Notes
The sharpening technique, is an image based effect, that according to wikipedia: make an image sharper, you can see that of the edge of the orb. Or not because of the projector screen.

[Insert Transition Here]

Presenter
Presentation Notes
On day, well figure this out….

OUYA

● Profiling
● Multithreading
● Multiplayer
● Other things that worked

Presenter
Presentation Notes
Now onto the OUYA.Our experience on the OUYA was different than on the SHIELD. The 15 FPS from our first build was odd so it forced us to do serious profiling and also look into ways to increase performance, like multithreading.So I’ll talk about that a bit and then we’ll jump into features that are generic to both the SHIELD and the OUYA like then way we implemented multiplayer.

Profiling on OUYA

● 15 fps out of the box
● Slower than the Nexus?
● Heavier OS?
● Not expected

Presenter
Presentation Notes
Remember that to our surprise, the OUYA was running slower than the Nexus 7.It might be that the OS is running on the same core as the game, while the other cores do nothing.We are assuming it was probably designed to save on battery life.[CLICK]At least in my setup it was.We did not expect this since it was using the same Tegra chip as the Nexus with a higher clock speed.It looks like we’ll have to do some profiling to figure this out.

Profiling on OUYA

● NVIDIA PerfHud ES
● High-Level
● Timer functions

● eglGetSystemTimeFrequencyNV
● eglGetSystemTimeNV

● OpenGL hook

Presenter
Presentation Notes
In order to profile on the OUYA, we had two methods in mind.PerfHud ES provided us with some high-level GPU profiling that worked out of the box.But in order to have access to low-level profiling, first we needed to add two timer functions included in the nvidia OpenGL implementation.After calling the functions, the PerfHud interface showed us the new cool button!Once activated, it renders your view over and over again for precise sampling, but on top of your game, Flash Stage3D makes it’s own thing, breaking the profiler behavior.Using the hook method previously discussed to intercept and cancel this overhead, might be an option here.

Presenter
Presentation Notes
Here’s how the high-level profiling tool looks like in PerfHud ES.You can see lines and numbers and…It’s a tool that…ehhh…[JP]Wirelessly connects to your android device or using USB and allows you to see CPU usage as well as FPS and draw call counts.[LUC]Yeah, whatever he says….

Profiling on OUYA

● Adobe Scout
● Companion app
● No Google store
● Install on Nexus
● Backup apk
● Install on OUYA

Presenter
Presentation Notes
So here goes the second method, using Adobe Scout.Adobe Scout is the best profiling tool developed by Adobe and it’s a tool you can’t go without if you are building Flash-based games.It seemed easy enough since Adobe released a companion app on the Google store.The companion app streams the Flash profiling data back to Scout on your computer.But wait, there are no Google store on the OUYA.So a little trick to get it to run on the OUYA, is to install the app on another device, back up the APK and install it on the OUYA.After those steps, you’re in business!

Wave 1 Wave 2

Presenter
Presentation Notes
JP already showed you a screen using Scout on Lightbringer, here’s another way to look at it.In this screen the red line in the middle indicate 30 FPS.In average we seem to be staying close to our target.Now, as you can see in this awesome programmer-art zoom-in, our game is wave based and as the wave progress, the FPS drops a bit.

Presenter
Presentation Notes
Here’s the action at the end of wave with lots of enemies.

Presenter
Presentation Notes
And there’s another one.

Profiling results

● 15 fps out of the box?
● Firmware and stuff
● Yeah! Like Nexus 7
● 25-30 fps

● Extra cores?

Presenter
Presentation Notes
Remember that we were running between 15 FPS in our first try and a bit confused about it?We were ready to profile the OUYA in order to write a couple of slides on the shortcoming of this platform…Well, after 2 firmware updates and whatever else we did in-between we ran it again and we got 25-30 FPS, very similar results than the Nexus 7, which was expected.25-30 is borderline for our project and both of these devices have 4 cores to work with, but we are only using one. It would be nice to tap into those extra cores.

Multithreading

● WorkerThread
● Web
● Android
● iOS

● Thread task manager
● C++ Implementation
● Native Extension

Presenter
Presentation Notes
Let’s discuss multithreading a bit.How could we leverage those other cores using AIR?We experimented with two ways to do multithreading in Flash.The first, is to use the Flash WorkerThread.This was released for the Web first, then Android was introduced in AIR 3.8 and Adobe is planning to add the iOS version soon.Meaning that this will eventually work on any platforms without significant changes.Or a second option would be to create a native extension that implements a thread manager.This would require tweaks or rewrites for each supported platforms and will not work on the Web though.On the other hand, the performance and flexibility of native threading will always surpass that of Adobe’s WorkerThreads.However, most of the time the extra CPU might not be necessary to make your game.To conclude on multithreading, if you venture into this, none of these solutions are for beginners ;)

Multiplayer

● Sync lot of object
● The Bro1

● Cumulus (Cirrus, Stratus)
● RTMFP (data,voice,video)
● Worked on OUYA and SHIELD

1. http://www.slideshare.net/FrimaStudio/mastering-multiplayer-stage3d-and-air-game-development-for-mobile-devices

Presenter
Presentation Notes
Talking about Multi-Something, multiplayer comes to mind.Since the game is a fast paced action game with a hundred enemies, a lot of data needed to be synchronised fast.At first, we tried one of our existing TCP broadcasting solution (called the bro), but the reliability enforced by TCP added un unwanted overhead that UDP would bypass.So we built a custom solution using Cumulus as the handshake server.Cumulus is an open source project similar to Adobe’s Cirrus previously called Stratus.We are not here to judge project code names, but that’s a lot of clouds!It is based on RTMFP. A proprietary protocol developed by Adobe for efficient multimedia delivery.It’s also using UDP and supports Peer to Peer.We more often see that used for video or sound streaming, but it also supports data.And by the way this worked just great on both the SHIELD or OUYA as AIR supports Android.

Other things that worked

● Context Lost (Home button, calls)
● Native Extensions
● Profiling with the same tools (with SHIELD)
● Sound, Video…
● Interfaces

Presenter
Presentation Notes
Our networking solution using AIR was not the only thing that worked out of the box.One of the major advantage we saw porting from AIR was that many things worked without changes.For instance, pausing the game using the home menu triggered a context lost that you would have to handle on browsers, but with AIR on mobile it was restored properly without a change.You’ll see that it was not the case in our next port.Other things like sounds, videos, interfaces and many more simply worked as advertised.With that in mind, it’s fair to conclude that AIR is one of the best API to port Web games to those new consoles.

ZT2 from PS3 to Shield

Presenter
Presentation Notes
Because I let JP introduce the Lightbringer game, it’s my turn for this one. Zombie Tycoon 2 was originally a PS3 and VITA game, with cross-play features and multiplayer.The game was built using Unreal3.Before showing you our pains and gains, let’s look at what the game is all about….

Presenter
Presentation Notes
Art or Video of ZT2

Porting ZT2

● What we started with
● Networking with Google Play
● Profiling and Performance
● Visual Features
● Technical Issues
● Anti-Piracy

Presenter
Presentation Notes
Here is what we will discuss in the next few slides.First, we’ll show you were we started with the cross-play version.This game required multiplayer, so we’ll dig into this as well.Also, adding a new platform means that we need to profile it in order to define what features we will be able to have in it.Now, what is a port without some technical issues? We had some and we’ll talk about them.And finally, we will tackle the anti-piracy features available on Android.

What was done for VITA

● UnrealMobile Branch VITA branch (Alpha)
● Unreal simplified rendering system
● Reduced textures and meshes
● Simplified Fog of War
● Reduced particle count
● Normal Lightmaps (not directional)
● No post process

Presenter
Presentation Notes
Since the game needed to target the VITA, we had to use the Unreal mobile branch, branched for VITA in Alpha stage.Since the VITA was not as powerful as the PS3 we had to reduce many features and effects.Unreal for mobile had a simplified rendering system, so it helped a bit.But still, we had to reduced textures and meshes size.Simplify our Fog of WarReduced particle count here and thereUse Normal Lightmaps as opposed to directionalAnd we removed all post process in order for the game to work well on it.It’s a good thing we had to do that for VITA because at first glance, this looks like a good target for the SHIELD.

First SHIELD build

● VITA build on the Shield
● PS3 textures and meshes

● 40 FPS

Presenter
Presentation Notes
Alright so our initial tests on the SHIELD turned out pretty good with the VITA version. We got about 40 FPS without tweaking anything, even using the PS3 textures and meshes.The Fog of War and a few other features were broken though. So we decided to fix most of those before making more assumptions on performance.But at least we are not running at 5 FPS!

Multiplayer - No PSN!

● PS3 and Vita
● PSN: yeah !

● SHIELD
● Google Play Game SDK
● Modify Unreal socket layer
● JNI communication

Presenter
Presentation Notes
On PS3 and VITA we had PSN to work with, so a single SDK for both and it worked great.However, for obvious reasons, because it’s exclusive to Sony, we could not use that on the SHIELD.At the same time, the Google Play API was recently released so we thought it would be a good fit for the Android-based SHIELD.We would probably have to modify the Unreal socket layer a bit and we thought that we’d have to code in JAVA as well.

Google Play API – Part 1
● Good
● NAT traversal, peer connection all good
● Integrated UI, good encapsulation
● Invite Friends, Achievements

● Bad
● JAVA Native Interface only

● Ugly
● Packet drop

Presenter
Presentation Notes
Integrating the basic SDK was painless, however, soon enough we ran into many differences between our existing implementation and Google’s.The good parts were that it was easy to setup, easy to implement.For instance NAT traversal was built-in, allowing easy peer 2 peer multiplayer.The UIs (invite a friend and such) were also well integratedand the API was dummy proof so that it was holding our hands in the process.[CLICK]The bad part was that if we needed to go low-level, we had to resort to their JAVA layer. It’s not that we don’t like JAVA, it’s just that our team on this game were C++ coders. Also, there is an overhead calling JAVA methods from C++.[CLICK]And the Ugly part was that we were experiencing random packet loss and disconnections. It was a major roadblock.I will not go in more details about that issue….since…..

Google Play API – Part 2

● Version 12
● Seems much more stable
● No more dropped packets

● Differences vs PSN
● Quickplay (automatchmaking)
● Callbacks
● Google Leaderboard

Presenter
Presentation Notes
A couple of weeks after our original implementation, Google released a new version that solved all of our stability issues and dropped packets.To wrap up, each API have different interfaces and behaviors so we had to tweak our implementation a bit.For example, you can see Google mindset in the matchmaking, where it was creating rooms as needed with the same call where we had to manually do that on PSN.Also, most callbacks were not the same on PSN and Google but that was expected, so we had to make minor tweaks there.And finally something we though was a funny design decision. The Leaderboard was only allowing either highest or lowest values to be saved, so you could not use kill ratios or averages in it, something we had on PSN. So, we simply dropped those leaderboards.

Google Play API – Screens

Presenter
Presentation Notes
Here are some screenshots of the Google UIs inside our game.

Google Play API – Screens

Presenter
Presentation Notes
Here is another one. Keep in mind that for most features you can build your own UI and feed them with Google data.

Mobile Features

● Analytics
● Rate us
● Like us (+1)

Presenter
Presentation Notes
What’s a mobile game port without adding features like Rate Us or Like us (+1 us in our case).One of the advantage was that those APIs are very mature and easy to implement.So we won’t get into any more detail. But the android platform just work great for that.

YUP!

Presenter
Presentation Notes
JPYUP

Profiling and Debugging

● NVIDIA PerfHud ES (T4)
● Shield prototype vs retail
● Same profiler tricks
● Native debugging

Presenter
Presentation Notes
For every new platforms comes new tools, the shield is no exception.Major Luc already shows you that Nvidia have enhanced their Perfhud profiler to support their mobile GPU like the t3 on ouya a while ago, but recently they released their T4 compatible version.For those of you who have a shield prototype, the nvidia profiler need the latest firmware and the prototype doesn’t update much, like never. And secondly, it is unstable and crash randomly. So, stash it away, and go buy a retail one.The tricks Luc explained about enabling the profiler low level feature using the native extension on the ouya, still applies here. Actually you can use the same ANE.You can also debug your native code with break point and everything with nvidia insights, the visual studio plugin, It’s uses the GDBServer and it’s a bit slow, but it is working.

Performance

● 20 more FPS !
● 2 cores with Unreal
● Texture size versus streaming…
● PS3 = 256M video ram
● SHIELD = 2G combined ram

Presenter
Presentation Notes
Throughout our profiling sessions we identify some issues. And here is a few of them.The biggest one gave us 20 more frame per seconds, reaching a satisfying 60 fps. But what is it you asked ?. Nice question, it was the proxy functionality of Unreal. That functionality is supposed to group nearby object into a single draw call. Reducing drastically the load on the GPU. During our merge of the Unreal VITA branch, we deactivated this feature, increasing the draw call from 200 to a thousand. Give or take a few hundreds.Even though we were not cpu bound it is good to note that Unreal for mobile only support 2 cores, again being able to tap into the extra core would be nice.Something that does not naturally come to mind, is to think that the shield somewhere have an edge over the PS3. But on the vram side of thing it does. On the PS3 we had to stream the texture to make sure we never overfill the 256 meg of vram, leading to some streaming artifact. However on the shield, we can store the whole set of texture in ram, like 5 times, meaning no streaming. Next is a video on the PS streaming, focus on the bottom right of the screen

Streaming Video

Presenter
Presentation Notes
Here we go, For those who haven't notice, here is a little close up.

Streaming Video

Presenter
Presentation Notes
Here is the same video the shield without streaming.You see, nice and smooth

Build weight

● Build weight 1.3G (VITA: 400, PS3:900)
● WAVs only
● 48KH Stereo to 22KH mono

● Seek free package
● Package per level
● Rearrange package reducing redundancy

Presenter
Presentation Notes
While profiling we find out that the shield version was 40% bigger than the ps3. Since Google was paying for the bandwidth of the APK up to 2 gigs. It was all good.No seriously, we looked into it. Just to be internet green. You know, someone have to save those routers.Turn out, that the mobile version of unreal running on android only support WAV for playing sounds on multiple channel at the same time. Because of that, the build size increased significantly.If any of you already had to argue with a sound guy over music quality versus weight, you know where we were.After some bloodshed, we agree that reducing the quality by 4-5 would do the job just fine for the shield. This gave us, 460mb back.Another thing that took space was the seek free package per level in unreal, because, to stay within the memory limit of the vita we had to created about 200meg of redundant data by fiddling into the packages. We could have taken this port opportunity for fix this and save some weight in the download. But remember, Google pays for the bandwidth of the APK, and this time we let it go. For real!

Visual Features

● Bloom
● Gamma correction
● LightMaps
● MSAA
● Fog of War
● Upping particles (10 to 50%)

Presenter
Presentation Notes
Now that we’ve reduced the overhead in size and performance. We got a brand new budget for improvement. Let’s spend it on visual features.Some of the feature that were left out in the vita build could now be reactivated like the bloom, the gamma correction or the MSAA. To do so we gathered some of the best in the field, we brainstormed on the complexity of the architecture needed and build hypothesis on the problems. Well, in short we selected a couple of checkbox and options in unreal, and it worked.Let me show you some of them.

Blooom

Presenter
Presentation Notes
Bloom

Gamma correction

Presenter
Presentation Notes
without

Gamma correction

Presenter
Presentation Notes
WithIm still not sure wich I prefere most, but my artist are sold to the effect.

Lightmaps - VITA

Presenter
Presentation Notes
Lightmaps for VITA

Lightmaps - SHIELD

Presenter
Presentation Notes
Lightmaps for the SHIELDNotice the lights around the police car at the back, or the overall sharpness of the shadow

MSAA

Presenter
Presentation Notes
It’s always though to see MSAA on still frame, but here it is anyway.Next, we’ll show you the difference on quality for the fog of war,Focus on the top right side at the early beginning.

FOW

Presenter
Presentation Notes
FOWOn the next video we’ll show you the difference between the VITA where we had to cut the shadows. And on the SHIELD where we added them back.

Shadow

● Shadow Blobs

Presenter
Presentation Notes
Vita version WithoutShield version withAnd both.

UI tweaks

● Maybe obvious?
● PS3 rescaled for VITA
● Different controller = different UI
● Don’t underestimate

Presenter
Presentation Notes
To conclude on Visual feature, UIs are often too obvious, so they are whether missed or underestimated when porting to new platforms.So we wanted to use a quick slide to talk about this.From PS3 to VITA, we frankly had nothing to do except to scale the image in pre process to fit on the VITA, this way they are not rescaled in real-time.However, on SHIELD, we had to deal with a different controller, meaning different pictures for in game interface, tutorial and menu, and there could be a lot of it .

Technical Issues

● Context reset
● Fog of war

●glReadPixels in batches
● ScaleForm maturity on Android

Presenter
Presentation Notes
Before we can call it a day on this port, we still had technical issues to tackle. The biggest we had that should have been straightforward was that we had to deal with the “Home” button. The game had to resume properly when reactivated, but it was not.The FOW was problematic as it simply disappear when resuming the game. A good cheat for some, but a bug for us.Our FOW was using a texture that dynamically changed as you progressed, and was stored on the GPU only, so we needed to save it back on the disk by reading it’s texels using an opengl function.For some reason, it was failing when trying to get the whole image in one call, But was working when read in batches.Remember when we talked about the maturity of Scaleform in Unreal for Android? Well, here lies our second issue.

Save/Home

Presenter
Presentation Notes
When resuming the game from the home menu, where it should look like this, [CLICK]it looked sometimes like this.

Save/Home

Presenter
Presentation Notes
Or messed up like this… We went back and forth with both scaleform and unreal about that, we got more stability over time, and 3 days before this talk, we got a fix.

Anti-Piracy

● Licence server
● Use Developer console FIRST

● Wait
● APK , OBB version number

● Wait
● Rage quit.

● Save | commit | go home

Presenter
Presentation Notes
And here is our last slides on challenges we had porting ZT2 to the shield, Since there is a lot of piracy on Android and that Google is providing ways to counter that, we wanted to give it a shot.lEven though we already did it multiple time for android game, that was the first time using google play, so at first we expected to spend less than one hour on this, by only enabling security option in the Google developer console. Turns out, it took 2 days. First we had created our Google play account some weeks ago to get the multiplayer running and that gave us an encryption key, and everything was working fine. But the moment we uploaded our build into the dev platform, this requires our signed enterprise encryption key. Which is not the same as Google play gave us, And here start the struggle. We haven't found a way to update our google play account with our enterprise key, so we had do delete our Google play account, and create a new one with our key, wait here and there for the google server to cache or process our changes…Once this is done, you want to upload your apk to the developer console. But if your using Obb (or extension file) with the licensing server, you really need to validate your build incremental version number, because if you don’t , you might end up with an extension file that just don’t download, or an apk that don’t validate, and there is no indication what so ever about what went wrong. On top of that, there is an undefined ammount of time you need to wait before your changes get process…Because of that, like us, you might want to rage quit one afternoon because things just don’t work, and the next morning everything could be working fine. If that append, Save / commit / call it a day.In short, I still think their system is good to deploy and publish application, but it lack a lot of feedback to tell you where to sit back and wait for 2 hours before trying anything else.

Compare the final game

Presenter
Presentation Notes
And to conclude with this port, here is a comparative video between the shield and vita.You can see on the left side, for the shield, it’s sharper, color are more rich and the meshes resolution are higher. But Keep in mind however that the screen resolution is also higher on the shield.

Last transition!!!

Presenter
Presentation Notes
Be my guess luc.

Conclusion

● Android works well to port to
● Micro-console

● They are powerful today
● Rapid iterations are planned

● Multiplayer

Presenter
Presentation Notes
In conclusion, after doing two ports, one in Flash and one in Unreal, we can say that the micro-consoles based on Android are great platforms to port to.They are powerful even today, in fact in places where we tough we would have to cut, we actually added features instead.So we can imagine what they’ll be tomorrow.On top of that most vendors are planning rapid iterations, so expect new devices every year.They also offer access to the proven Android SDK.Multiplayer can be a bit more work, if you use a specific system like the ones on consoles, however, using a generic one like the one we used in Flash can be straightforward.

Thank You

● http://www.light-bringers.com/
● ZT2 on SHIELD out Thursday
● Please Fill Survey
● Questions?

Presenter
Presentation Notes
Thanks for sticking with us to the end!Here’s the link if you want to try out LB next week.Zombie Tycoon 2 on the SHIELD will come out this Thursday.We have a few codes for the PS3 and VITA version so come see us after the questions.Also, please Fill those surveys, for every one you fill with ‘awesome’ we will feed one extra programmer.Any questions?

http://www.light-bringers.com/

	Slide Number 1
	Takeaways
	Lexicon
	Slide Number 4
	Slide Number 5
	The Future of Micro console
	Our Experiments
	AIR
	Unreal
	Differences between platforms
	Differences between platforms
	This slide was intentionally left here by mistake
	Slide Number 13
	Porting LB
	Trying new consoles
	OUYA
	SHIELD
	Controller
	Profiling on SHIELD
	SHIELD(T4) vs T3
	Step up ideas
	Bypassing AIR/Stage3D limitations
	Bypassing AIR/Stage3D limitations
	What can be done this way?
	Post-process
	Demo
	Demo
	Demo
	Demo
	Demo
	[Insert Transition Here]
	OUYA
	Profiling on OUYA
	Profiling on OUYA
	Slide Number 35
	Profiling on OUYA
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Profiling results
	Multithreading
	Multiplayer
	Other things that worked
	Slide Number 44
	Slide Number 45
	Porting ZT2
	What was done for VITA
	First SHIELD build
	Multiplayer - No PSN!
	Google Play API – Part 1
	Google Play API – Part 2
	Google Play API – Screens
	Google Play API – Screens
	Mobile Features
	YUP!
	Profiling and Debugging
	Performance
	Streaming Video
	Streaming Video
	Build weight
	Visual Features
	Blooom
	Gamma correction
	Gamma correction
	Lightmaps - VITA
	Lightmaps - SHIELD
	MSAA
	FOW
	Shadow
	UI tweaks
	Technical Issues
	Save/Home
	Save/Home
	Anti-Piracy
	Compare the final game
	Last transition!!!
	Conclusion
	Thank You

