
D3D11 Software Tessellation

John Kloetzli, Jr
Graphics Programmer, Firaxis Games

About Firaxis

● Founded in 1996

● Strategy games!

● Sid Meier lead designer

● 20+ shipped games

● Civilization V

● XCOM: Enemy Unknown

“Games that stand the test of time”

About Me

● I work on the Civilization team

● Graphics programmer

● Over 7 years at Firaxis

● Procedural modeling

● Terrain rendering

Civilization V

● Shipped Sept. 2010

● One of the first DX11 games
● Variable-bitrate GPU texture

decompression

● Hardware tessellation

● Two large expansions
● Gods & Kings

● Brave New World

OLANO et al. Variable Bit Rate GPU
Texture Decompression. In EGSR 2011

Civilization V

● Low-res Heightmap

● 64x64 per hex

● Procedurally generated

● Unique – no repeat

● High-res Materials
● 512x512 per hex

● Artist-created

● Repeats across the world

Better Terrain

● Problem: Sharp features
● Low-res heightmap cannot display

unique, high-res detail

● Solution: High-res heightmap
● More data (Compression? Streaming?)

● Efficient Tessellation

GPU Displacement Tessellation

Demo

Simple procedural terrain...

● Ridges to test difficult case

● Assume strategy game camera (lots of pan/zoom)

● High res: 256x256 Heightmap per tile

● Large: 128x128 tiles (32,768x32,768 heightmap)

...all done on the GPU

● Heightmap/Normalmap created on demand

● Use texture arrays to implement megatexture

● Tessellation created on demand using GPU

Compute Visible Tiles

Resources

Build New Tiles

Create Heightmap

Create Normalmap

Normal

Height

Shade

Render Visible Cells Tessellation ?

CPU GPU

Overview

● Fixed Tessellation
● Spoiler: Doesn’t work well

● Hardware Tessellation
● Easy to implement

● Better performance

● Questionable quality

● Variable Software Tessellation
● Complex to implement

● Great quality/performance balance

Fixed Tessellation

● Pre-tessellate fixed-res mesh
● Render same mesh for each cell

● Displace in VS

● High-res is slow
● Lots of geometry (IA/Memory)

● Tiny triangles (Quad utilization)

● Low-res is ugly
● Triangles do not match data

Hardware Tessellation
Vertex Shader

Hull Shader

Domain Shader

Tessellaton

Low res patch mesh
(Lower IA/Memory load)

Displacement here
(same vertex load)

Subdivision levels
 Level for patch
 Level for each edge
 (Match with neighbors)

Hardware Tessellation

● Continuously variable tessellation levels
● Complex resampling of displacement map

● Blurring - high frequency data disappears

● Aliasing - “Sliding” or “Shifting” artifacts

● Power-of-two tessellation levels
● Much easier sampling of displacement map

● Hard to change tessellation level without “popping”

View-Based Hull Shaders

● Use camera information to set tessellation level
● Distance from camera

● Height of camera (Civ V) best for strategy games

● Projected screen size

● Silhouette enhancement

● …and variations

View-Based Hull Shaders

“Tiny triangle”

Equal sample/triangle
density

Threshold of
perception
for triangle
density shift

Quality/Performance gap

Smooth data

Civilization V

Quad covers 1x1 height samples

Data-Based Hull Shaders

Smooth Patch

Sharp Patch

Data-Based Hull Shaders

● Does quad (0,0)x(1,1) contribute to the final image?
We can easily run this test at power-of-two resolutions

 At level N skip 2N samples

 Increase threshold at each resolution (Demo: Multiply by 1.7)

Large delta is over
threshold, does
contribute

Small delta is under
threshold, does not
contribute

(0,0)

(3,3)

(3,0)

(0,3)

(0,0) (1,0) (2,0)

Data-Based Hull Shaders

● Build MIP hierarchy of ‘necessary’ quads
● Run compute kernel across each level

● Results in tessellation level for patch
Since we limited ourselves to pow2 tessellation

(0,0)

(0,4) (4,4)

(4,0)

Level 0

(0,0)

(0,2) (2,2)

(2,0)

Level 1

0

0

0

0

0 1

Kernel:
 if lower level quad marked,
 output lower level
 else if this quad passes test
 output this level
 else
 output nothing

Data-Based Hull Shaders

● In demo…
● Higher resolution

●Cell size is 256x256

●16x16 patches per cell (fastest)

● Cache tessellation levels
●Compute when tile becomes visible

●Large cache texture stores all tessellation levels

● Use Compute Shaders…
●To generate the level heirarchy

●To copy highest level into cache texture

● Use Hull Shader…
●To lookup tessellation level for patch

●To match tessellation with neighbors

Compute Visible Tiles

Resources

Build New Tiles

Create Heightmap

Create Normalmap

Normal

Height

Shade

Render Visible Cells Hardware Tessellation

CPU GPU

Patch
Tess

Cache

Compute Tess Levels

Data-Based Hull Shaders

● Pros
● Looking at the heightmap was key

● Many fewer tiny triangles generated

● High quality (no compromise)

● Cons
● Need to compute+store tess levels

● Does not match data closely
●Patch positions are fixed

●Patch dicing pattern fixed

●Still many tiny triangles

Can we find a better solution for our
use case?

Software Tessellation

● Inspiration: AdaptiveTessellationCS40
● D3D11 DirectCompute sample from Microsoft

● Simulate hardware tessellation in software

● Run in D3D11 Downlevel 10.0

● Goal: Increase the reach of D3D11-style tessellation

● Why not design a new tessellation algorithm?
● Custom-built for detailed terrain rendering

● Custom-build for strategy games

● Run in compute shaders

Software Tessellation

● Design goals:
● Avoid tiny triangles

● High quality

● Efficiency (for real-time)

● Our solution:
● Simplify patch definition

● Generate more patches

● Data-based patch generation

● Data-based patch dicing

Software Tessellation

● Simplify patch definition
● Only support pow2 patches

● No tessellation factors for center

● Edge tessellation factors 0 or 1

● Patch defined by uint4

[Position, Level, Dicing pattern]

Only 16 possible patterns!

Adjacent patches must be within
one tessellation level

Kernel 1:
 if lower level quad marked,
 output lower level
 else if lower level neighbor marked
 output this level
 else if this quad passes test
 output this level
 else
 output nothing

Software Tessellation

● Build Tess MIP hierarchy
● Entire tile covered by patches

● No overlapping patches

● Adjacent patches within one level

Level 0 Level 1

0

0
0 1

1

0

0

1

Kernel 2:
 if any quad in group marked
 mark all quads in group

Software Tessellation

● Output patches by looking at MIP structure
● Position, level from location with MIP

● Look at lower-level neighbors to determine dicing pattern

● Append to patch list

● Optimization: Break complex patches into component parts

Software Tessellation

 The direction we split quads is important

● In our demo…
● Treat patch split direction as separate dicing pattern

● Process patch list to determine best split direction

Difference of normal (dot product)

Extensions

Software Tessellation

● How do we build geometry from patch list?
Difficulty: Dicing patterns vary from 2 to 4 tris

● Simple algorithm: Degenerate geometry
● Output 9 verts and 12 indices per patch

● Extra verts and degenerate triangles not optimal

● We are only getting indexing within a patch

● Fast enough to run every frame

0 2 8 0 8 6 0 0 0 0 0 0

0 2 3 3 2 8 3 8 6 0 0 0

0 1 2

3 4 5

6 7 8

Software Tessellation

● How do we build better geometry from patch list?

● AdaptiveTessellationCS40
● Use prefix-sum to get base vertex/index ID for each patch

● Tightly packed VB/IB

● Slower, indexing within patch only

● Tile Vertex ID table
● Build table of all possible verts for an entire tile

● Build verts that are referenced by any patch

● Resolve vertex ID from table

● Slowest, indexing across whole tile

Compute Visible Tiles

Resources

Build New Tiles

Create Heightmap

Create Normalmap

Normal

Height

Shade

Render Visible Cells
Vertex Displacement

CPU GPU

Patch
List

Build Tess MIP

Emit Quad List

Build VB/IB

Compute Visible Tiles

Resources

Build New Tiles

Create Heightmap

Create Normalmap

Normal

Height

Shade

Render Visible Cells
Vertex Displacement

CPU GPU

VB/IB
List

Build Tess MIP

Emit Quad List

Build VB/IB

Software Tessellation

Software Tessellation

Software Tessellation

● Performance Results
● AMD A10 APU/8670D GPU

● Final render performance

● GPU processing time for frame, ms

● Pros: Good performance, high quality

● Cons:
● MIP heirarchy more complex + larger

● Need patch list for every visible tile

Resolution Hardware Software Speedup

1600x1200 6.673 5.044 24.41%

Conclusion: Pixel shader execution dominates runtime, so it is worth doing
extra work at the geometry level to generate efficient triangles.

GPU PerfStudio2

Implementation Tips
● Compute shaders have pros and cons

● Generally very fast, but can be slower than PS (texture swizzle patterns)

● Can run asynchronously on some hardware

● Atomic Operations vs. Atomic Counters
● Atomic operations are general but slow

● Atomic counters only increment or decrement…

● …but have hardware backing on some systems

● Indirect draw/dispatch
● Function parameters pulled from GPU buffer

● Works well for draw calls (Parameter is number of verts)

● Harder to use for dispatch (Parameters are number of threadgroups)

Conclusion

DX11: It’s all about compute!

CPU

Data

Compute
Kernels

Questions?

We are hiring!
www.firaxis.com

Quad covers 2x2 height samples

Quad covers 1x1 height samples

● Take advantage of flexible geometry generation
● Create more than one VB based on pixel shader needed

● Can be huge optimization!

Extensions

Steep slope

Shallow
slope Software

Tessellation

Vertical PS

Vertical +
horizontal PS

