
Dictionary Learning for Games

Manny Ko
Principal Engineer, Activision R&D
Graphics Research and Development

Outline

● K-SVD and dictionary learning

● Linear Blend Skinning

● Brief survey on automatic skinning and compression

●Dictionary learning for LBS

● Two-layer sparse compression of Le & Deng.

● This talk is about compressing skinned animations.

Frames, Sparsity and Global Illumination:
New Math for Games

GDC 2012

Robin Green – Microsoft Corp
Manny Ko – PDI/Dreamworks

Orthogonal Matching Pursuit
and K-SVD for Sparse Encoding

Manny Ko
Senior Software Engineer, Imaginations Technologies

Robin Green
SSDE, Microsoft Xbox ATG

Representing Signals

● We represent signals as linear combinations of things we already know –
the ‘basis’

× 𝛼1 +

× 𝛼2 +

× 𝛼3 +⋯

=

× 𝛼0 +

Orthonormal Bases (ONBs)

● The simplest way to represent signals is using a set of orthonormal bases

 𝑏𝑖 𝑡 𝑏𝑗(𝑡)

+∞

−∞

𝑑𝑡 =
 0 𝑖 ≠ 𝑗
 1 𝑖 = 𝑗

Example ONBs

● Fourier Basis

𝑏𝑘 𝑡 = 𝑒𝑖2𝑝𝑘𝑡

● Wavelets

𝑏𝑚,𝑛 𝑡 = 𝑎−𝑚 2 𝑥 𝑎−𝑚𝑡 − 𝑏𝑚

● Gabor Functions

𝑏𝑘,𝑛 𝑡 = 𝜔 𝑡 − 𝑏𝑛 𝑒𝑖2𝑝𝑘𝑡

● Contourlet

𝑏𝑗,𝑘,𝐧 𝑡 = λ𝑗,𝑘 𝑡 − 2𝑗−1𝐒𝑘n

Benefits of ONB

●Analytic formulations

●Well understood mathematical properties

● Fast and simple algorithms for projection

Problems with ONB

●One-size-fits all – not data adaptive

●Global support cannot adapt to data locally

● Fourier support is infinite, SH support spans the sphere

● Try using Fourier to represent a step-function

●Not sparse – very few zero coefficients

●Not additive - relies on destructive cancellation.

Gibb’s Ringing – Fourier and SH

What is Overcomplete Dictionary?

●Overcomplete means the dictionary has more atoms
(columns) than the minimum required for the
dimension of the signal

● In 3D, an ONB only needs 3 basis

● A 3D dictionary can have dozens or hundreds

The Sparse Signal Model

𝐃
A fixed dictionary

𝛼

=

𝑥

𝑁 𝑁

𝐾

resulting
signal

Sparse
vector of

coefficients

Why so many atoms?

●More atoms give our algorithm a better chance to
find a small subset that matches a given signal

● Let’s look at some patches from Barbara

Patches from Barbara

Domain Specific Compression

● Just 550 bytes per image

1. Original

2. JPEG

3. JPEG2000

4. PCA

5. KSVD per block

Project onto Dictionaries

● Overcomplete and non-orthogonal
● interactions among atoms cannot be ignored

● How do we project?
● Sparse Coding problem

Matching Pursuit

1. Set the residual 𝑟 = 𝑥

2. Find an unselected atom
that best matches the
residual 𝐃𝛼 − 𝑟

3. Re-calculate the residual
from matched atoms
𝑟 = 𝑥 − 𝐃𝛼

4. Repeat until 𝑟 ≤ 𝜖

Greedy Methods

𝐃
𝛼

=

𝑥

Orthogonal Matching Pursuit (OMP)

● Add an Orthogonal Projection to the residual calculation

1. set 𝐼 ∶= ∅ , 𝑟 ≔ 𝑥, 𝛾 ≔ 0

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do

3. 𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟

4. 𝐼 ≔ 𝐼, 𝑘

5. 𝛾𝐼 ≔ 𝐃𝐼
+𝑥

6. 𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼

7. end while

What is Dictionary Learning?

● select a few atoms for each signal – e.g. OMP

●Adjust the atoms to better fit those signals

●Repeat

K-SVD

● Is one of the well known dictionary learning
methods

● Check out our GDC2013 talk

● our GDC13 slides "OMP and K-SVD for Sparse Coding“

● See Jim’s talk just before this session

●Miral’s Online Learning is the other.

http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd

Overcomplete Dictionary Recap

● Importance of overcomplete dictionaries

●OMP for efficient projection onto dictionaries

● K-SVD for learning a better dictionary using samples
from the real data

Part 2: Skinning

● blank

Linear Blend Skinning

●𝑣𝑖 = 𝑤𝑖𝑗(𝑅𝑗
|𝐵|
𝑗=1 𝑝𝑗 + 𝑇𝑗)

● 𝑝𝑖 is the position for the 𝑖th vertex of the rest pose

● 𝑤𝑖𝑗 ≥ 0 𝑎𝑛𝑑 𝑠𝑢𝑚𝑠 𝑡𝑜 𝑜𝑛𝑒(affinity). The non-negative

constraint makes the blend additive. The affinity
constraint prevents over-fitting and artifacts.

● 𝑅𝑗 usually is orthogonal to avoid shearing or scaling

● |𝐵| is the number of weights (usually <= 6)

Blending Weights

Blending Weights

Blend Skinning on GPU

G
P
U

c
o
re

s

LBS on GPUs

●𝑤𝑖𝑗 typically very sparse – 4-6 weights or less per-

vertex

● Ideally a group of vertices all have the same weights
to avoid thread divergence or splitting drawcalls

● These are fairly serious constraints

a) Some vertices might need more weights – e.g. very
smooth meshes or complex topology (hand)

Weights Reduction
Poisson-based Weight Reduction of Animated Meshes [Landreneau and Schaefer 2010]

Discrete optimization:
– Impossible to find optimum solution

– Very high cost for non-optimum solution
• Fracture

• Significant increase of computing cost: nK non-zero n(K+1) non-zero

K-Largest - fracturing

K-Largest - normals

Vertex Normal in Shader

Magic 4

●why 4 weights is too few to generate smooth
weights

● 4 vertices specifies an affine transform exactly.

● simplices in 3D contains 4 vertices for barycentric
coordinates.

Two-Layer Sparse Compression of
Dense-Weight Blend Skinning

Binh Le and Zhigang Deng

SIGGRAPH2013

Two-Layer Sparse Compression, Le & Deng 2013

●Use dictionary learning to compute a two-level
compression using bones

● Work with the weights of the bind-pose directly

Why Dictionary for LBS?

●Why dictionary learning?

● limitations of Orthonormal-basis e.g. eigen/PCA
● Not adaptive

● Not purely additive – i.e. negative weights (relies on cancellation)

● No intuitive meaning – bones extracted cannot be used to tweak the
model

Dense-Weight Compression

Input: Dense matrix
Bone Transformations

Blending

Vertices

Vertices

B
o

n
es

Sparse Matrix Factorization – dictionary learning

Sparse Matrix Factorization

c=max{card(wi)}+1

Sparse Matrix Factorization

c=max{card(wi)}+1

n is very large

card(A)=2n→min

Algorithm – Block coordinate descent

Alternative update D and A

(Block coordinate descent)

Update D Update A

Update Coefficients A

Linear least square with 2 unknowns

Use mesh smoothness
assumption to quickly
find the non-zero
candidates (virtual bones)

αi

Movies

Analysis of Two-Layer Scheme

● Use 100’s of virtual bones means we are not limited to a
sparse approximation to the original animation.

● virtual bones act as a ‘common subexpression’
● e.g. think compute shader that writes to LDS.

● Still enforce sparsity on VBs to control runtime cost and
LDS usage – but k can be 100’s.

● Per-vertex weights are
● very sparse (2 per vertex) and the same for all vertices

● good for GPU.

Learning Virtual Bones

● Virtual bones are learned from the dense vertex weights
by block-coordinate-descent (BCD):

Sparse coding: search for a few good atoms among the
input columns. Use that to project all the rest of the inputs.

● Atom update: given the sparse weights from above we
seek to adjust the atoms to make them fit the inputs that
needs them better – a series of small LS problems.

● Similar to EM/Lloyd-Max

Sparse Coding
Sparse coding:

● insert the vertex with the largest L2 norm

● add a few more vertex which has the smallest dot-
product with the 1st atom

● solve the basis-pursuit with OMP (see K-SVD) or LARS.

● solve 2x2 least-square prob. for 𝑤𝑖𝑗 to blend masters
bones

Weight Map – matrix A

●Weights and indices for each vertex to blend virtual
bones

● solving a small 2x2 linear system to minimize MSE:

● arg𝑚𝑖𝑛𝑥 𝐷𝑥 − 𝑤𝑖 ^2

● runtime per-vertex cost is just 2 dotp

● no bone hierarchy to worry about

● no warp divergence even for high valence vertices

Atom Updates
Atom update:

 foreach vertex
● update each atom to minimize error for the set of vertices that

reference it (this is like K-SVD)

●Miral’s Online Dictionary Learning [Miral09]

Atom Updates
● Precompute A and B

● 𝐴 = 𝛼𝑖
𝑡
𝑖=1 𝛼𝑇

● B = 𝑥𝑖𝛼
𝑇𝑡

𝑖=1

● For all atoms

● 𝑢𝑗
1

𝐴𝑗,𝑗
𝑏𝑗 − 𝐷𝑎𝑗 + 𝑑𝑗 − eq(5)

● 𝑑𝑗
1

max 𝑢𝑗 2,1
𝑢𝑗. − eq 6

● 𝑢𝑗is thresholded to make sure # of non −

zero is below the # of master bones

Live Demo
● youtube

https://www.youtube.com/watch?v=9__31MKlcpE#t=96

Compression with Example Poses

Without using example pose

– Minimize weights difference

With using example poses

– Minimize reconstruction error

Using Exemplar poses

Virtual Bones Distribution

Recap

● The two-level scheme can work with dense (hand painted)
weights or example poses (blend shape?)

● Only the vertex positions are needed

● a fixed memory footprint and uniform per-vertex cost - GPU

friendly

● Combines the quality of dense skinning and the efficiencies of
sparse-LBS. Animators can use blend-shapes or FFD more.

Recap 2

●Besides it uses dictionary learning and modern
sparsity methods – how cool is that?

● Last year we show how good dictionary learning is
for compressing 2d images and 3d volumes

●Now we see what it can do for animation.

● Thank you!

Recap 3

●Non-negative LS and Active-set Method (ASM)

●Block-coordinate descent

● Sparsity constraints

● L1 relaxation and L0-norm constraints

● Direct solving

● These are all very useful tools.

Acknowledgements

● Binh Huy Le & Zhigang Deng kindly provided the demo and their Siggraph
materials.

● Robin Green for being my collaborator for many years.

● Igor Carron inspired me to learn sparsity methods and matrix factorization
and for his spirit of broad exploration and sharing.

● Julien Mairal for the online learning math

● Peter-Pike who inspired me to apply modern math to graphics and games.

● Carlos Gonzalez Ochoa for sharing his insight in animation.

Activision R&D is Hiring

●Our group is hiring

References

● Alexa 2000. “As-rigid-as-possible shape interpolation”, SIGGRAPH 2000.

● Halser 2010. “Learning skeletons for shape and pose”, I3D 2010.
● Kavan, Sloan and O'Sullivan 2010. “Fast and Efficient Skinning of Animated Meshes” Comput. Graph.
Forum.
● Ko, and Green 2013 “Orthogonal Matching Pursuit and K-SVD for Sparse Encoding” GDC, Math for
Games 2013 gdc2013-ompandksvd
● Landreneau & Schaefer “Poisson-Based Weight Reduction of Animated Meshes”, CGF 28(2), 2012.
● Le & Deng 2012. “Smooth skinning decomposition with rigid bones”, ACM TOG, Vol. 31, No. 6.
● Le & Deng 2013. “Two-Layer Sparse Compression of Dense-Weight Blend Skinning”, Siggraph 2013
Paper page
● Mairal 2009. “Online dictionary learning for sparse coding” Int. Conf. on Machine Learning.

http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://graphics.cs.uh.edu/ble/papers/2013s-dwc/

Appendix

● Kabsch/Procrutes method – use SVD to compute the
MSE minimum rotation of one point-set to another.

● Kabsch_algorithm

http://en.wikipedia.org/wiki/Kabsch_algorithm

