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●Dictionary learning for LBS 

● Two-layer sparse compression of Le & Deng. 

● This talk is about compressing skinned animations. 
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Representing Signals 

● We represent signals as linear combinations of things we already know – 
the ‘basis’ 

× 𝛼1 +  

× 𝛼2 + 

× 𝛼3 +⋯ 

= 

× 𝛼0 +  



Orthonormal Bases (ONBs) 

● The simplest way to represent signals is using a set of orthonormal bases  

 

 

 

 

 

 

 𝑏𝑖 𝑡 𝑏𝑗(𝑡)

+∞

−∞

𝑑𝑡 =  
 0    𝑖 ≠ 𝑗
 1    𝑖 = 𝑗

 



Example ONBs 

● Fourier Basis 

𝑏𝑘 𝑡 = 𝑒𝑖2𝑝𝑘𝑡  

 

 

 

● Wavelets 

𝑏𝑚,𝑛 𝑡 = 𝑎−𝑚 2 𝑥 𝑎−𝑚𝑡 − 𝑏𝑚  

 

● Gabor Functions 

𝑏𝑘,𝑛 𝑡 = 𝜔 𝑡 − 𝑏𝑛 𝑒𝑖2𝑝𝑘𝑡  

 

 

 

● Contourlet 

𝑏𝑗,𝑘,𝐧 𝑡 = λ𝑗,𝑘 𝑡 − 2𝑗−1𝐒𝑘n  

 



Benefits of ONB 

●Analytic formulations 
 

●Well understood mathematical properties 

 

● Fast and simple algorithms for projection 

 



Problems with ONB 

●One-size-fits all – not data adaptive 

●Global support cannot adapt to data locally 

● Fourier support is infinite, SH support spans the sphere 

● Try using Fourier to represent a step-function 

●Not sparse – very few zero coefficients 

●Not additive - relies on destructive cancellation. 



Gibb’s Ringing – Fourier and SH 



What is Overcomplete Dictionary? 

●Overcomplete means the dictionary has more atoms 
(columns) than the minimum required for the 
dimension of the signal 

● In 3D, an ONB only needs 3 basis 

● A 3D dictionary can have dozens or hundreds 



The Sparse Signal Model 

𝐃 
A fixed dictionary 

𝛼 
 

= 
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resulting 
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coefficients 



Why so many atoms? 

●More atoms give our algorithm a better chance to 
find a small subset that matches a given signal 

● Let’s look at some patches from Barbara 



Patches from Barbara 





Domain Specific Compression 

● Just 550 bytes per image 

1. Original 

2. JPEG 

3. JPEG2000 

4. PCA 

5. KSVD per block 



Project onto Dictionaries 

● Overcomplete and non-orthogonal 
● interactions among atoms cannot be ignored 

● How do we project? 
● Sparse Coding problem 



Matching Pursuit 

1. Set the residual 𝑟 = 𝑥 

2. Find an unselected atom 
that best matches the 
residual 𝐃𝛼 − 𝑟  

3. Re-calculate the residual 
from matched atoms 
𝑟 = 𝑥 − 𝐃𝛼 

4. Repeat until 𝑟 ≤ 𝜖 

Greedy Methods 

𝐃 
𝛼 

 

= 

𝑥 



Orthogonal Matching Pursuit (OMP) 

● Add an Orthogonal Projection to the residual calculation 

1. set 𝐼 ∶=  ∅ , 𝑟 ≔ 𝑥, 𝛾 ≔ 0  

2. while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑓𝑎𝑙𝑠𝑒) do 

3.    𝑘 ≔ argmax
𝑘

𝑑𝑘
𝑇𝑟  

4.    𝐼 ≔ 𝐼, 𝑘  

5.    𝛾𝐼 ≔ 𝐃𝐼
+𝑥 

6.    𝑟 ≔ 𝑥 − 𝐃𝐼𝛾𝐼 

7. end while 



What is Dictionary Learning? 

● select a few atoms for each signal – e.g. OMP 

●Adjust the atoms to better fit those signals 

●Repeat 



K-SVD 

● Is one of the well known dictionary learning 
methods 

● Check out our GDC2013 talk  

● our GDC13 slides "OMP and K-SVD for Sparse Coding“ 

● See Jim’s talk just before this session 

●Miral’s Online Learning is the other. 

http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd
http://www.slideshare.net/ManchorKo/gdc2013-ompandksvd


Overcomplete Dictionary Recap 

● Importance of overcomplete dictionaries 

●OMP for efficient projection onto dictionaries 

● K-SVD for learning a better dictionary using samples 
from the real data 

 



Part 2: Skinning 

● blank 



Linear Blend Skinning 

●𝑣𝑖 =  𝑤𝑖𝑗(𝑅𝑗
|𝐵|
𝑗=1 𝑝𝑗 + 𝑇𝑗) 

● 𝑝𝑖 is the position for the 𝑖th vertex of the rest pose 

● 𝑤𝑖𝑗 ≥ 0 𝑎𝑛𝑑 𝑠𝑢𝑚𝑠 𝑡𝑜 𝑜𝑛𝑒(affinity). The non-negative 

constraint makes the blend additive. The affinity 
constraint prevents over-fitting and artifacts. 

● 𝑅𝑗  usually is orthogonal to avoid shearing or scaling 

● |𝐵| is the number of weights (usually <= 6) 

 



Blending Weights 



Blending Weights 



Blend Skinning on GPU 
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LBS on GPUs 

●𝑤𝑖𝑗  typically very sparse – 4-6 weights or less per-

vertex 

● Ideally a group of vertices all have the same weights 
to avoid thread divergence or splitting drawcalls 

● These are fairly serious constraints  

a) Some vertices might need more weights – e.g. very 
smooth meshes or complex topology (hand) 



Weights Reduction 
Poisson-based Weight Reduction of Animated Meshes [Landreneau and Schaefer 2010] 

Discrete optimization: 
– Impossible to find optimum solution 

– Very high cost for non-optimum solution 
• Fracture 

• Significant increase of computing cost: nK non-zero  n(K+1) non-zero 



K-Largest - fracturing 

 



K-Largest - normals 



Vertex Normal in Shader 

 



Magic 4 

●why 4 weights is too few to generate smooth 
weights  

● 4 vertices specifies an affine transform exactly.  

● simplices in 3D contains 4 vertices for barycentric 
coordinates.  



Two-Layer Sparse Compression of 
Dense-Weight Blend Skinning 

Binh Le  and  Zhigang Deng 

SIGGRAPH2013 



Two-Layer Sparse Compression, Le & Deng 2013 

●Use dictionary learning to compute a two-level 
compression using bones 

● Work with the weights of the bind-pose directly 



Why Dictionary for LBS? 

●Why dictionary learning? 

● limitations of Orthonormal-basis  e.g. eigen/PCA 
● Not adaptive 

● Not purely additive – i.e. negative weights (relies on cancellation) 

● No intuitive meaning – bones extracted cannot be used to tweak the 
model 

 



Dense-Weight Compression 

Input: Dense matrix 
Bone Transformations 

Blending 

Vertices 

Vertices 
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Sparse Matrix Factorization – dictionary learning 



Sparse Matrix Factorization 

c=max{card(wi)}+1 



Sparse Matrix Factorization 

c=max{card(wi)}+1 

n is very large 

card(A)=2n→min 



Algorithm – Block coordinate descent 

Alternative update D and A 

(Block coordinate descent) 

Update D Update A 



Update Coefficients A 

 

Linear least square with 2 unknowns 

 

 

Use mesh smoothness 
assumption to quickly 
find the non-zero  
candidates (virtual bones) 

αi 



Movies 



Analysis of Two-Layer Scheme 

● Use 100’s of virtual bones means we are not limited to a 
sparse approximation to the original animation. 

● virtual bones act as a ‘common subexpression’  
● e.g. think compute shader that writes to LDS. 

● Still enforce sparsity on VBs to control runtime cost and 
LDS usage – but k can be 100’s. 

● Per-vertex weights are  
● very sparse (2 per vertex) and the same for all vertices 

● good for GPU. 



Learning Virtual Bones 

● Virtual bones are learned from the dense vertex weights 
by block-coordinate-descent (BCD): 

Sparse coding: search for a few good atoms among the 
input columns. Use that to project all the rest of the inputs.  

● Atom update: given the sparse weights from above we 
seek to adjust the atoms to make them fit the inputs that 
needs them better – a series of small LS problems. 

● Similar to EM/Lloyd-Max 



Sparse Coding 
Sparse coding: 

● insert the vertex with the largest L2 norm 

● add a few more vertex which has the smallest dot-
product with the 1st atom 

● solve the basis-pursuit with OMP (see K-SVD) or LARS. 

● solve 2x2 least-square prob. for 𝑤𝑖𝑗 to blend masters 
bones 



Weight Map – matrix A 

●Weights and indices for each vertex to blend virtual 
bones 

● solving a small 2x2 linear system to minimize MSE: 

● arg𝑚𝑖𝑛𝑥  𝐷𝑥 − 𝑤𝑖 ^2  

● runtime per-vertex cost is just 2 dotp 

● no bone hierarchy to worry about 

● no warp divergence even for high valence vertices 



Atom Updates 
Atom update: 

 foreach vertex  
● update each atom to minimize error for the set of vertices that 

reference it (this is like K-SVD) 

●Miral’s Online Dictionary Learning [Miral09] 



Atom Updates 
● Precompute A and B 

● 𝐴 =   𝛼𝑖
𝑡
𝑖=1 𝛼𝑇 

● B =  𝑥𝑖𝛼
𝑇𝑡

𝑖=1  

● For all atoms 

● 𝑢𝑗  
1

𝐴𝑗,𝑗
𝑏𝑗 − 𝐷𝑎𝑗  + 𝑑𝑗  − eq(5) 

● 𝑑𝑗 
1

max  𝑢𝑗  2,1
𝑢𝑗.  − eq 6  

● 𝑢𝑗is thresholded to make sure # of non −

zero is below the # of master bones 



Live Demo 
● youtube 

https://www.youtube.com/watch?v=9__31MKlcpE#t=96


Compression with Example Poses 

Without using example pose 

– Minimize weights difference 

 

With using example poses 

– Minimize reconstruction error 



Using Exemplar poses 



Virtual Bones Distribution 



Recap 

● The two-level scheme can work with dense (hand painted) 
weights or example poses (blend shape?) 

● Only the vertex positions are needed 

● a fixed memory footprint and uniform per-vertex cost - GPU 

friendly 

● Combines the quality of dense skinning and the efficiencies of 
sparse-LBS. Animators can use blend-shapes or FFD more. 

 

 



Recap 2 

●Besides it uses dictionary learning and modern 
sparsity methods – how cool is that?  

● Last year we show how good dictionary learning is 
for compressing 2d images and 3d volumes 

●Now we see what it can do for animation. 

● Thank you! 



Recap 3 

●Non-negative LS and Active-set Method (ASM) 

●Block-coordinate descent 

● Sparsity constraints  

● L1 relaxation and L0-norm constraints 

● Direct solving 

● These are all very useful tools. 
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Activision R&D is Hiring 

●Our group is hiring  
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Appendix 

● Kabsch/Procrutes method – use SVD to compute the 
MSE minimum rotation of one point-set to another. 

● Kabsch_algorithm 

http://en.wikipedia.org/wiki/Kabsch_algorithm

