GBC **Dictionary Learning for Games** Manny Ko Principal Engineer, Activision R&D **Graphics Research and Development** GAME DEVELOPERS CONFERENCE SAN FRANCISCO, CA MARCH 17-21, 2014 EXPO DATES: MARCH 19-21

Outline

- K-SVD and dictionary learning
- Linear Blend Skinning
 - Brief survey on automatic skinning and compression
- Dictionary learning for LBS
 - Two-layer sparse compression of Le & Deng.
- This talk is about compressing skinned animations.

Frames, Sparsity and Global Illumination: New Math for Games GDC 2012

Robin Green – Microsoft Corp Manny Ko – PDI/Dreamworks

Orthogonal Matching Pursuit

and K-SVD for Sparse Encoding

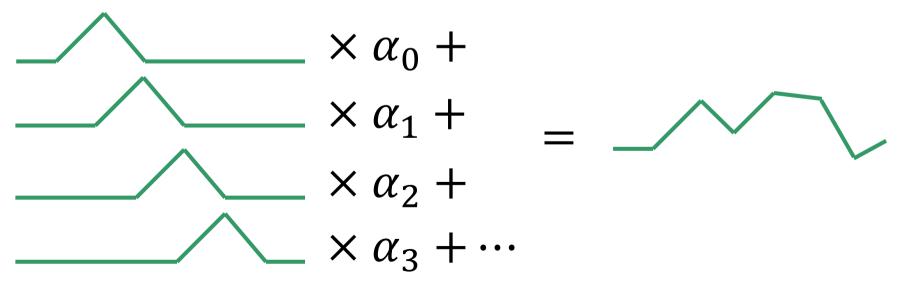
Manny Ko Senior Software Engineer, Imaginations Technologies Robin Green SSDE, Microsoft Xbox ATG

> SANFRANCISCO, CA MARCH 25-29, 2013 EXPO DATES: MARCH 27-29

GBC

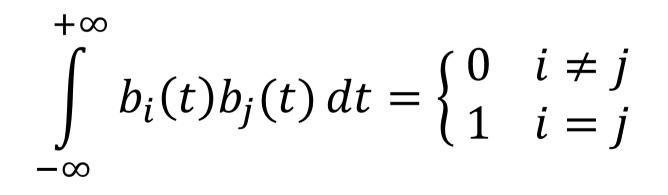
Representing Signals

• We represent signals as linear combinations of things we already know – the 'basis'



Orthonormal Bases (ONBs)

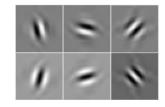
• The simplest way to represent signals is using a set of *orthonormal bases*



Example ONBs

- Fourier Basis $b_k(t) = e^{i2pkt}$
- Wavelets
- $b_{m,n}(t) = a^{-m/2}x(a^{-m}t bm)$

- Gabor Functions $b_{k,n}(t) = \omega(t - bn)e^{i2pkt}$
- Contourlet $b_{j,k,\mathbf{n}}(t) = \lambda_{j,k} (t - 2^{j-1} \mathbf{S}_k \mathbf{n})$



Benefits of ONB

• Analytic formulations

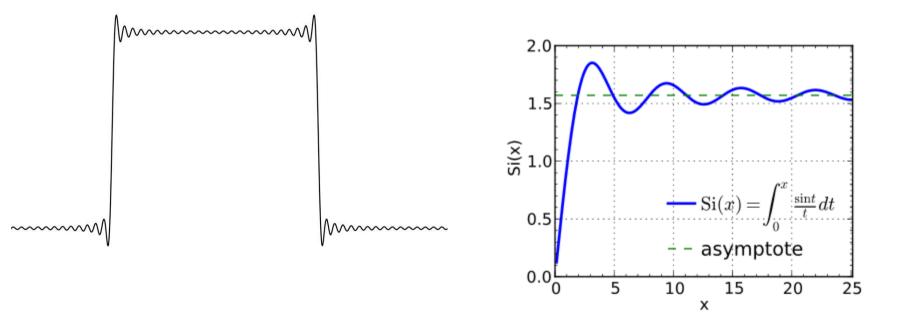
• Well understood mathematical properties

• Fast and simple algorithms for projection

Problems with ONB

- One-size-fits all not data adaptive
- Global support cannot adapt to data locally
 - Fourier support is infinite, SH support spans the sphere
 - Try using Fourier to represent a step-function
- Not sparse very few zero coefficients
- Not additive relies on destructive cancellation.

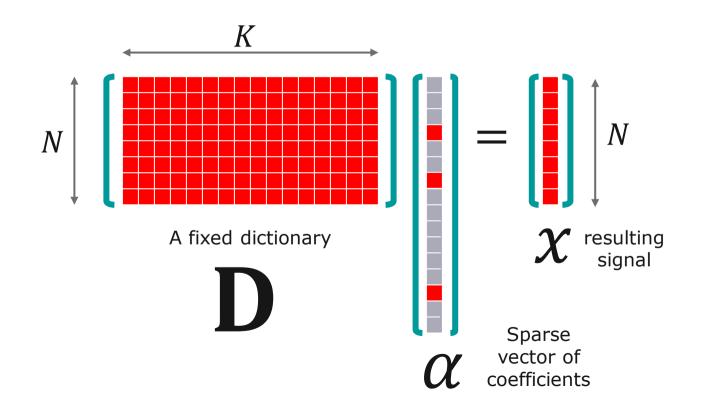
Gibb's Ringing – Fourier and SH



What is Overcomplete Dictionary?

- Overcomplete means the dictionary has more atoms (columns) than the minimum required for the dimension of the signal
 - In 3D, an ONB only needs 3 basis
 - A 3D dictionary can have dozens or hundreds

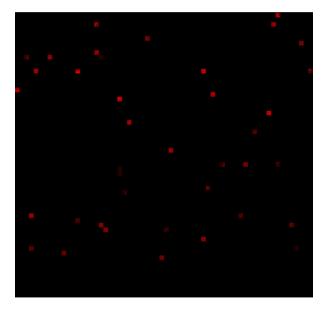
The Sparse Signal Model



Why so many atoms?

- More atoms give our algorithm a better chance to find a small subset that matches a given signal
 - Let's look at some patches from Barbara

Patches from Barbara



Domain Specific Compression

- Just 550 bytes per image
- 1. Original
- 2. JPEG
- 3. JPEG2000
- 4. **PCA**
- 5. KSVD per block

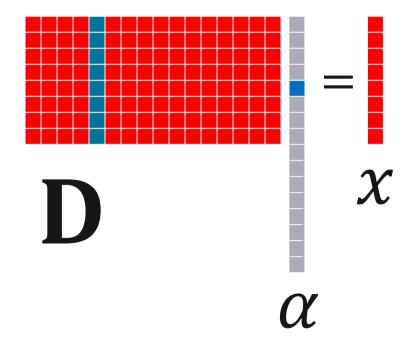
Project onto Dictionaries

- Overcomplete and non-orthogonal
 - interactions among atoms cannot be ignored
- How do we project?
 - Sparse Coding problem

Greedy Methods

Matching Pursuit

- 1. Set the residual r = x
- 2. Find an unselected atom that best matches the residual $\|\mathbf{D}\alpha r\|$
- 3. Re-calculate the residual from matched atoms $r = x \mathbf{D}\alpha$
- 4. Repeat until $||r|| \leq \epsilon$



Orthogonal Matching Pursuit (OMP)

• Add an Orthogonal Projection to the residual calculation

1. set
$$I := \{\emptyset\}, r \coloneqq x, \gamma \coloneqq 0$$

- 2. while (stopping test false) do
- 3. $k \coloneqq \underset{k}{\operatorname{argmax}} \left| d_k^T r \right|$

4.
$$I \coloneqq (I,k)$$

- 5. $\gamma_I \coloneqq (\mathbf{D}_I)^+ x$
- 6. $r \coloneqq x \mathbf{D}_I \gamma_I$
- 7. end while

What is Dictionary Learning?

- select a few atoms for each signal e.g. OMP
- Adjust the atoms to better fit those signals
- Repeat

K-SVD

 Is one of the well known dictionary learning methods

- Check out our GDC2013 talk
- <u>our GDC13 slides "OMP and K-SVD for Sparse Coding"</u>
- See Jim's talk just before this session
- Miral's Online Learning is the other.

Overcomplete Dictionary Recap

- Importance of overcomplete dictionaries
- OMP for efficient projection onto dictionaries
- K-SVD for learning a better dictionary using samples from the real data

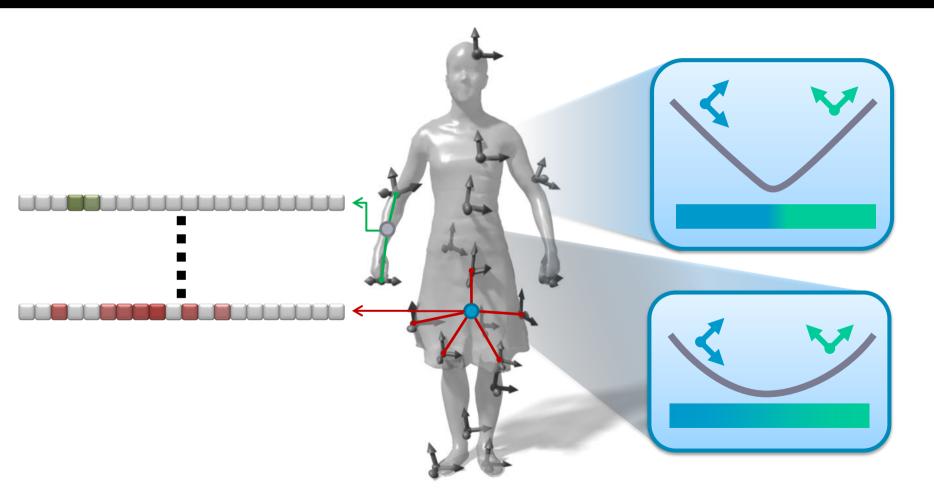
Part 2: Skinning

• blank

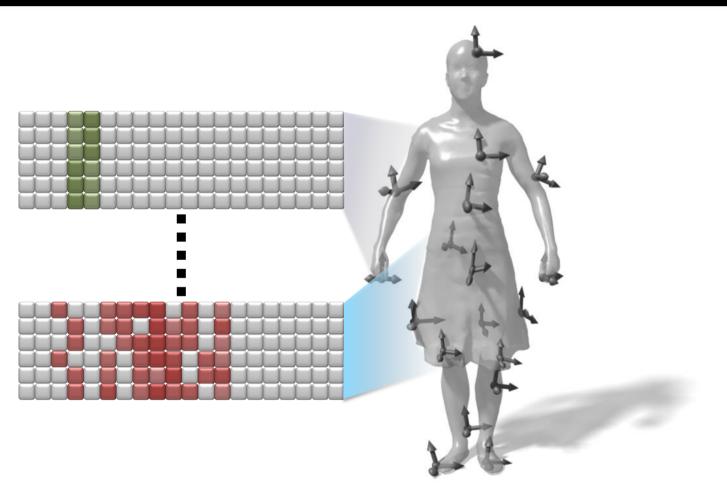
Linear Blend Skinning

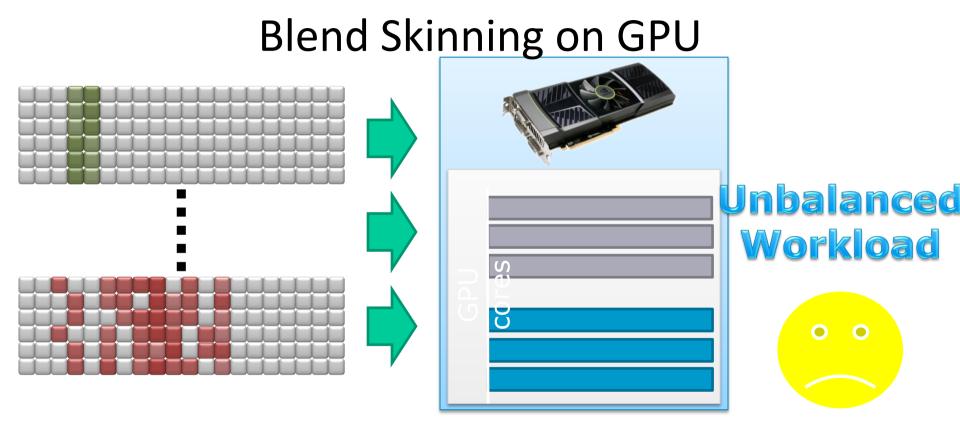
•
$$v_i = \sum_{j=1}^{|B|} w_{ij} (R_j p_j + T_j)$$

- *p_i* is the position for the *i*th vertex of the rest pose
- $w_{ij} \ge 0$ and sums to one(affinity). The non-negative constraint makes the blend additive. The affinity constraint prevents over-fitting and artifacts.
- *R_j* usually is orthogonal to avoid shearing or scaling
- |*B*| is the number of weights (usually <= 6)



GAME DEVELOPERS CONFERENCE® 2014



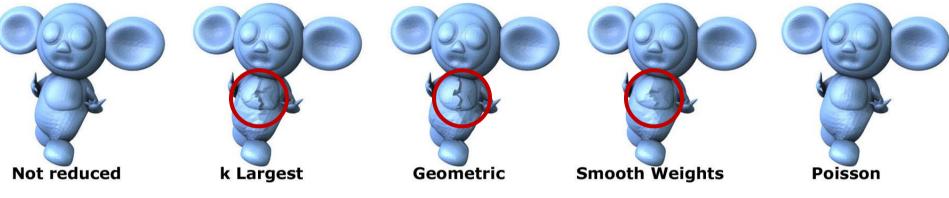


LBS on GPUs

- w_{ij} typically very sparse 4-6 weights or less pervertex
- Ideally a group of vertices all have the same weights to avoid thread divergence or splitting drawcalls
- These are fairly serious constraints

a) Some vertices might need more weights – e.g. very smooth meshes or complex topology (hand)

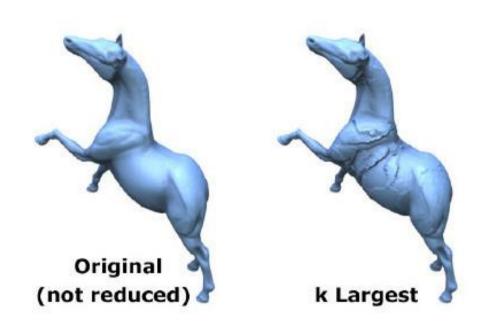
Poisson-based Weight Reduction of Animated Meshes [Landreneau and Schaefer 2010]



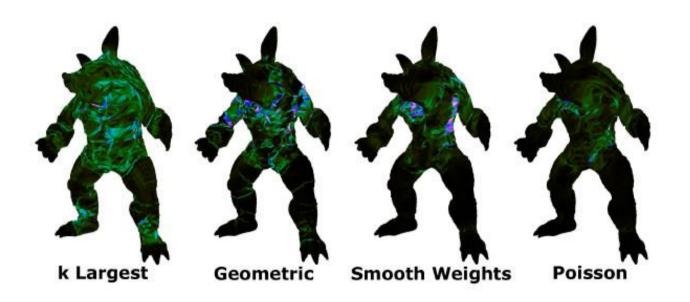
- Discrete optimization: $|\{w_{ij}|w_{ij} \neq 0\}| \leq |K|, \forall i$
 - Impossible to find optimum solution
 - Very **high cost** for non-optimum solution
 - Fracture
 - Significant increase of computing cost: nK non-zero $\rightarrow n(K+1)$ non-zero

UNIVERSITY of HOUSTON

K-Largest - fracturing



K-Largest - normals



Vertex Normal in Shader

$$\min\sum_{M} |\alpha_i (Mc_i^0 - \hat{c}_i)|^2$$

Solving for the inverse transpose

$$M^{-T} = \frac{1}{\beta} adj \left(\sum_{i} \alpha_i^2 c_i^0 \hat{c}_i^T\right) \left(\sum_{i} \alpha_i^2 c_i^0 c_i^T\right)$$

Magic 4

• why 4 weights is too few to generate smooth weights

- 4 vertices specifies an affine transform exactly.
- simplices in 3D contains 4 vertices for barycentric coordinates.

Two-Layer Sparse Compression of Dense-Weight Blend Skinning

Binh Le and Zhigang Deng UNIVERSITY of **HOUSTON**

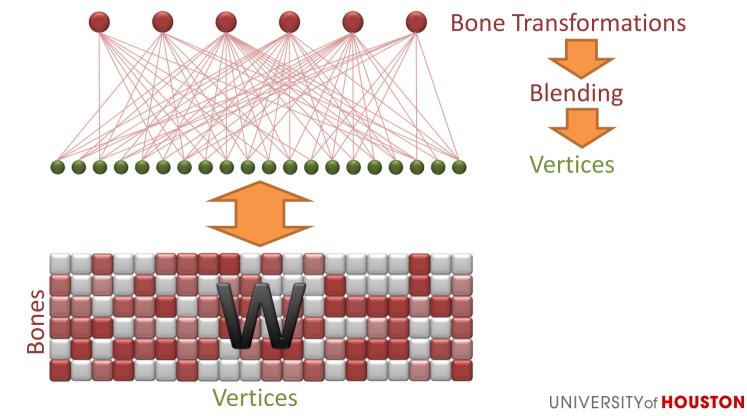
Two-Layer Sparse Compression, Le & Deng 2013

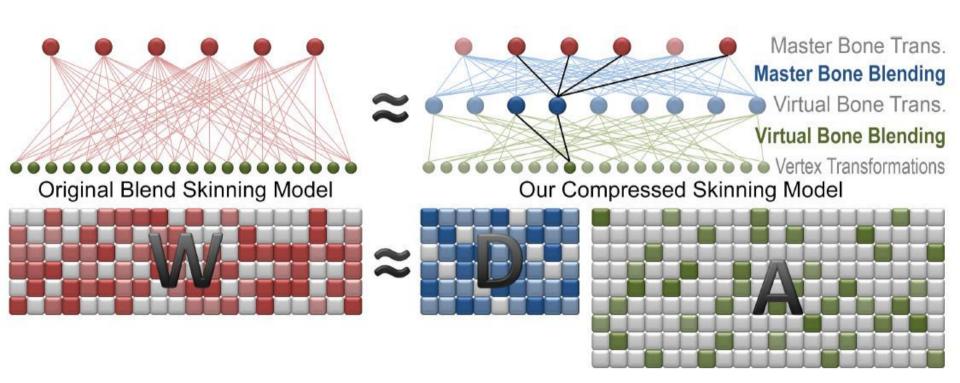
- Use **dictionary learning** to compute a two-level compression using bones
 - Work with the weights of the bind-pose directly

Why Dictionary for LBS?

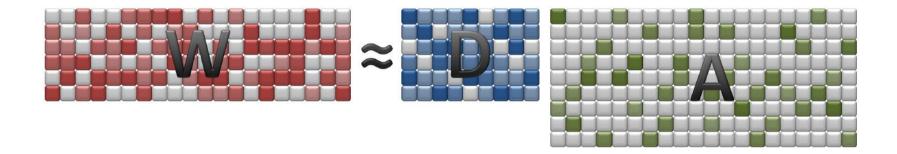
- Why dictionary learning?
 - limitations of Orthonormal-basis e.g. eigen/PCA
 - Not adaptive
 - Not purely additive i.e. negative weights (relies on cancellation)
 - No intuitive meaning bones extracted cannot be used to tweak the model

✤ Input: Dense matrix





Sparse Matrix Factorization — dictionary learning



$$\min_{D,A} \Delta_W^2 = \min_{D,A} \frac{1}{kn} \|DA - W\|_F^2$$

Subject to: $\operatorname{card}(d_i) \le c, \forall i$
 $\operatorname{card}(\alpha_i) \le 2, \forall i$

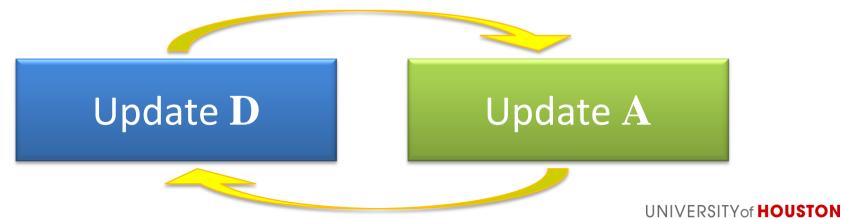
$$\min_{D,A} \Delta_W^2 = \min_{D,A} \frac{1}{kn} \|DA - W\|_F^2$$

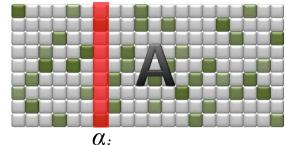
Subject to: $\operatorname{card}(d_i) \le c, \forall i \nleftrightarrow c = \max\{\operatorname{card}(w_i)\} + 1$
 $\operatorname{card}(\alpha_i) \le 2, \forall i$

$$\min_{D,A} \Delta_W^2 = \min_{D,A} \frac{1}{kn} \|DA - W\|_F^2$$

Subject to: $\operatorname{card}(d_i) \leq c, \forall i \nleftrightarrow c = \max\{\operatorname{card}(w_i)\} + 1$
 $\operatorname{card}(\alpha_i) \leq 2, \forall i \nleftrightarrow \begin{cases} n \text{ is very large} \\ \operatorname{card}(\mathbf{A}) = 2n \rightarrow \min \end{cases}$

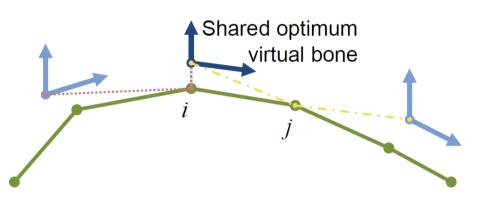
Alternative update D and A (Block coordinate descent)

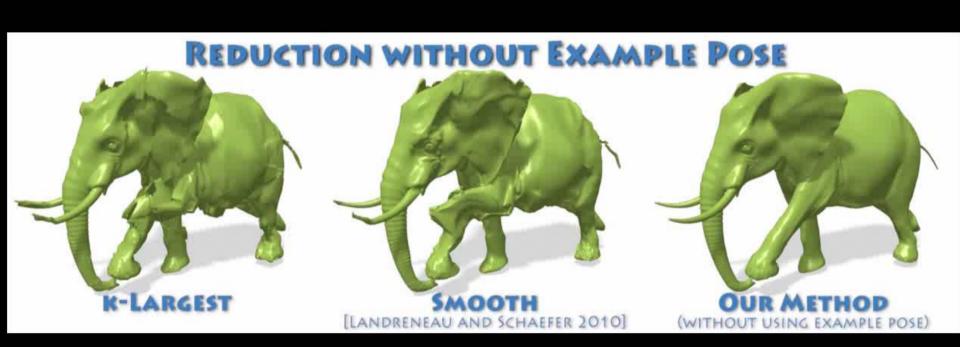




Linear least square with 2 unknowns $\min_{\substack{(\alpha_i)_r \\ (\alpha_i)_s}} \|d_r(\alpha_i)_r + d_s(\alpha_i)_s - w_i\|_2^2 \text{ s.t. } (\alpha_i)_r + (\alpha_i)_s = 1$

Use mesh smoothness assumption to quickly find the non-zero candidates (virtual bones)





Analysis of Two-Layer Scheme

- Use 100's of virtual bones means we are not limited to a sparse approximation to the original animation.
- virtual bones act as a 'common subexpression'
 - e.g. think compute shader that writes to LDS.
- Still enforce sparsity on VBs to control runtime cost and LDS usage but *k* can be 100's.
- Per-vertex weights are
 - very sparse (2 per vertex) and the same for all vertices
 - good for GPU.

Learning Virtual Bones

• Virtual bones are learned from the dense vertex weights by block-coordinate-descent (BCD):

Sparse coding: search for a few good atoms among the input columns. Use that to project all the rest of the inputs.

- Atom update: given the sparse weights from above we seek to adjust the atoms to make them fit the inputs that needs them better – a series of small LS problems.
- Similar to EM/Lloyd-Max

Sparse Coding

Sparse coding:

- insert the vertex with the largest L2 norm
- add a few more vertex which has the smallest dotproduct with the 1st atom
- solve the basis-pursuit with OMP (see K-SVD) or LARS.
- solve 2x2 least-square prob. for w_{ij} to blend masters bones

Weight Map – matrix A

- Weights and indices for each vertex to blend virtual bones
- solving a small 2x2 linear system to minimize MSE:
 - $\arg min_x ||Dx w_i||^2$
- runtime per-vertex cost is just 2 dotp
- no bone hierarchy to worry about
- no warp divergence even for high valence vertices

Atom Updates

Atom update:

foreach vertex

- update each atom to minimize error for the set of vertices that reference it (this is like K-SVD)
- Miral's Online Dictionary Learning [Miral09]

Atom Updates

- Precompute A and B
 - $A = \sum_{i=1}^{t} \alpha_i \alpha^T$ • $B = \sum_{i=1}^{t} x_i \alpha^T$
- For all atoms

•
$$u_j \leftarrow \frac{1}{A_{j,j}} (b_j - Da_j) + d_j - eq(5)$$

• $d_j \leftarrow \frac{1}{\max(\|u_j\|_{2}, 1)} u_{j} - eq(6)$

• u_j is thresholded to make sure # of non – zero is below the # of master bones

Live Demo

• <u>youtube</u>

Without using example pose

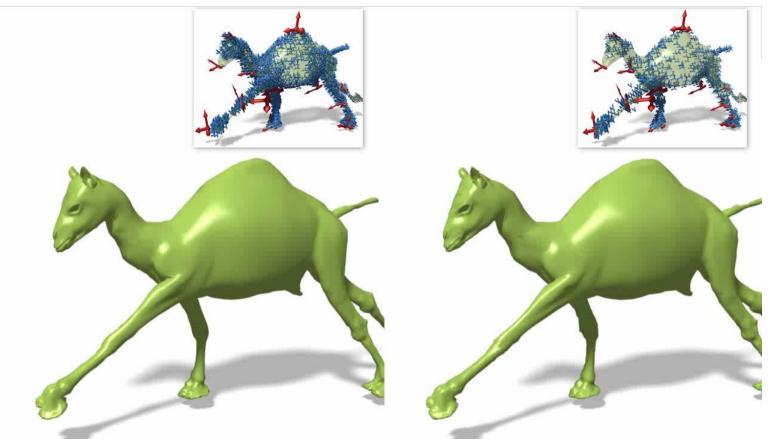
- Minimize weights difference

$$\min_{D,A} \frac{1}{kn} \left\| DA - W \right\|_F^2$$

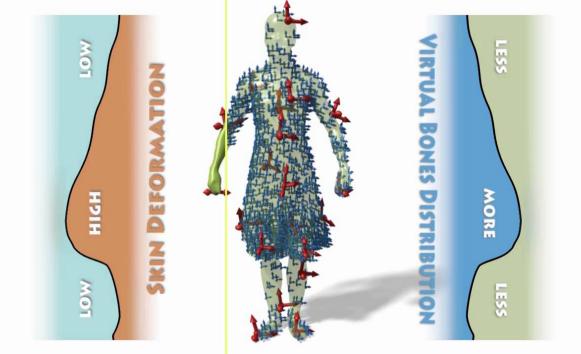
With using example poses

- Minimize reconstruction error

$$\min_{D,A} \frac{1}{3fn} \sum_{i=1}^{n} E_i^2$$



Virtual Bones Distribution



Recap

- The two-level scheme can work with dense (hand painted) weights or example poses (blend shape?)
 - Only the vertex positions are needed
- a fixed memory footprint and uniform per-vertex cost GPU friendly
- Combines the quality of dense skinning and the efficiencies of sparse-LBS. Animators can use blend-shapes or FFD more.

Recap 2

- Besides it uses **dictionary learning** and modern **sparsity methods** how cool is that? ⁽ⁱ⁾
- Last year we show how good dictionary learning is for compressing 2d images and 3d volumes
- Now we see what it can do for animation.
- Thank you!

Recap 3

- Non-negative LS and Active-set Method (ASM)
- Block-coordinate descent
- Sparsity constraints
 - L1 relaxation and L0-norm constraints
 - Direct solving
- These are all very useful tools.

Acknowledgements

- Binh Huy Le & Zhigang Deng kindly provided the demo and their Siggraph materials.
- Robin Green for being my collaborator for many years.
- Igor Carron inspired me to learn sparsity methods and matrix factorization and for his spirit of broad exploration and sharing.
- Julien Mairal for the online learning math
- Peter-Pike who inspired me to apply modern math to graphics and games.
- Carlos Gonzalez Ochoa for sharing his insight in animation.

Activision R&D is Hiring

• Our group is hiring 🙂

References

- Alexa 2000. "As-rigid-as-possible shape interpolation", SIGGRAPH 2000.
- Halser 2010. "Learning skeletons for shape and pose", I3D 2010.
- Kavan, Sloan and O'Sullivan 2010. "Fast and Efficient Skinning of Animated Meshes" Comput. Graph. Forum.
- Ko, and Green 2013 "Orthogonal Matching Pursuit and K-SVD for Sparse Encoding" GDC, Math for Games 2013 gdc2013-ompandksvd
- Landreneau & Schaefer "Poisson-Based Weight Reduction of Animated Meshes", CGF 28(2), 2012.
- Le & Deng 2012. "Smooth skinning decomposition with rigid bones", ACM TOG, Vol. 31, No. 6.
- Le & Deng 2013. "Two-Layer Sparse Compression of Dense-Weight Blend Skinning", Siggraph 2013 Paper page
- Mairal 2009. "Online dictionary learning for sparse coding" Int. Conf. on Machine Learning.

Appendix

- Kabsch/Procrutes method use SVD to compute the MSE minimum rotation of one point-set to another.
- <u>Kabsch_algorithm</u>