Working With 3D Rotations

Stan Melax

Graphics Software Engineer, Intel

SAN FRANCISCO. CA MARCH 17-21, 2014 EXPO DATES: MARCH 19-21

GBC

Human Brain is wired for Spatial Computation

"I don't need to ask for directions"

Translations

A childhood IQ test question

Agenda

- Rotations and Matrices (hopefully review)
- Combining Rotations
- Matrix and Axis Angle
- Challenges of deep Space (of Rotations)
- Quaternions
- Applications

Terminology Clarification

Preferred usages of various terms:

	Linear	Angular
Object Pose	Position (point)	Orientation
A change in Pose	Translation (vector)	Rotation
Rate of change	Linear Velocity	Spin

also: *Direction* specifies 2 DOF, *Orientation* specifies all 3 angular DOF.

Rotations Trickier than Translations

Translations

a then **b** == **b** then **a**

x then **y != y** then **x** (non-commutative)

Programming with rotations also more challenging!

2D Rotation θ

2D Rotation θ

Rotate \bullet [0 1] by θ about origin

• $[-\sin(\theta) \cos(\theta)]$

2D Rotation 🔨 of an arbitrary point •

Rotate \bullet about origin by θ

$$\bigcirc = \cos \theta + \sin \theta$$

2D Rotation of an arbitrary point

Rotate• $\begin{bmatrix} x \\ y \end{bmatrix}$ about origin by θ $x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$

2D Rotation Matrix

Rotate• $\begin{bmatrix} x \\ y \end{bmatrix}$ about origin by θ • $\begin{aligned} x' &= x \cos \theta - y \sin \theta \\ y' &= x \sin \theta + y \cos \theta \end{aligned}$ • $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is rotation by θ

2D Orientation

Yellow grid placed over first grid but at angle of θ

Columns of the matrix are the directions of the axes.

Matrix is yellow grid's Orientation

2D Passive Transformation

Basis: $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

 $\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$

(note: exact same math as before)

 $\begin{bmatrix} x' \\ y' \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix}$ both same point but In different reference frames

3D Rotation around Z axis

Can Rotate around X and Y too

 $\begin{array}{c} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{y}' \\ \mathbf{z}' \end{array} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$

Rotating Objects (changing orientation)

Matrices used for both rotations and orientations

Quat rotations:	[0 .7 0 .7]	[.7 0 0 .7]	$[0 \ 0 \ .7 \ .7]$	
orientations:	[0 0 0 1]	[0 0 .7 .7]	[.5 .5 .5 .5]	[0 .7 .7 0]

Row vs Column Conventions

OpenGL and most math books use column vectors:

 $\mathbf{v'} = \mathbf{M} \ \mathbf{v} = \mathbf{B} \ \mathbf{A} \ \mathbf{v}$

All the same.

Combining Rotations

Combine a sequence of Rotations A, B,...

Rotate v by A, then B, then C... = C (B (Av))

Mathematically we know

So with matrix-matrix multiplication let:

$\mathbf{R} = \mathbf{C} \mathbf{B} \mathbf{A}$

R is a single rotation that is the same as rotating by **A**, then by **B** then **C**.

Multiplication Order:

W O R	90° on World Y	90° on ``World″ X
D	A _{world}	B _{world}
L O C A	A _{local} 90° on Local Y (dice side 2	<i>B_{local}</i> 90° on "Local" Z 2) (dice side 3)

World Coordinate Frame

MARCH 17–21, 2014 GDCONF.COM

Multiplication Order:

Math Equations

Example When to use Local frame

- Player "pulls up" on flight stick.
- Pitch upward about <u>object</u> wing (x) axis.
- World **x** irrelevant
- Multiply rotation (about x) on the <u>right</u> hand side

Sidenote: a point doesn't have an orientation, so never do this for points.

Find Rotation **R** Between Orientations **A** and **B**

need to be more specific

 Have an object with orientation A, what rotation R will change it to have orientation B?

 $R = BA^{-1}$

• Given a direction v in reference frame A, what rotation R will show how v points according to B? $R = R^{-1}A$

Be aware of all the details of the problem to be solved.

Rotating (Reorienting) a Rotation

Machine that rotates an object by *rot* :

Apply 45°

Tilt to the

Machine:

rot

Rotating a Rotation – Its Different

6 6

MARCH 17–21, 2014 GDCONF.COM

Rotating a Rotation: Decompose Steps

How to calculate what this new rotation will be?

Rotate duck into **and** back out of the machine's reference frame:

Rotating a Rotation: The Mathematics

Rotating a Rotation: The Mathematics

Now drop the duck...

 $rot_{tilted} = tilt * rot * tilt^{-1}$

Matrix & Axis Angle

3D Orientation / Rotation Matrix **R**

$$\boldsymbol{R} = \begin{bmatrix} R\boldsymbol{x}_{x} & R\boldsymbol{y}_{x} & R\boldsymbol{z}_{x} \\ R\boldsymbol{x}_{y} & R\boldsymbol{y}_{y} & R\boldsymbol{z}_{y} \\ R\boldsymbol{x}_{z} & R\boldsymbol{y}_{z} & R\boldsymbol{z}_{z} \end{bmatrix}$$

General form of Rotation Matrix:

- Orthonormal basis: Rx Ry Rz
- $Rz = Rx \times Ry$ etc.
- Determinant(R)==1
- Inverse(R) == Transpose(R)
- Has a corresponding axis of rotation

Rotation Matrix – Finding its Axis Angle

axis will be an eigenvector of **R**

Example of corresponding Matrix and Axis Angle

To check, verify: axis == R * axis

Matrix for \mathbf{a}, θ ?

How would axis/angle rotate a point [x, y, z]?

Find b, c unit vecs a, b, c orthonormal

 $a = b \times c$, $c = a \times b$, $b = c \times a$

- Find $\boldsymbol{b}, \boldsymbol{c}$ unit vecs $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ orthonormal $\boldsymbol{a} = \boldsymbol{b} \times \boldsymbol{c}$, $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$, $\boldsymbol{b} = \boldsymbol{c} \times \boldsymbol{a}$
- Get [xyz] as weighted sum of **a**,**b**,**c**

- Find $\boldsymbol{b}, \boldsymbol{c}$ unit vecs $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ orthonormal $\boldsymbol{a} = \boldsymbol{b} \times \boldsymbol{c}$, $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$, $\boldsymbol{b} = \boldsymbol{c} \times \boldsymbol{a}$
- Get [xyz] as weighted sum of a,b,c
- Stuff along **a** stays the same,
- Results along **b** & **c** based on sinθ and cosθ portions along **b** & **c**

$$\sum_{\substack{x'\\y'\\z'}} = a\left(a \cdot \begin{bmatrix} x\\y\\z \end{bmatrix}\right) + b\left(b \cdot \begin{bmatrix} x\\y\\z \end{bmatrix}\cos\theta - c \cdot \begin{bmatrix} x\\y\\z \end{bmatrix}\sin\theta\right) + c\left(b \cdot \begin{bmatrix} x\\y\\z \end{bmatrix}\sin\theta + c \cdot \begin{bmatrix} x\\y\\z \end{bmatrix}\cos\theta\right)$$

- Find $\boldsymbol{b}, \boldsymbol{c}$ unit vecs $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ orthonormal $\boldsymbol{a} = \boldsymbol{b} \times \boldsymbol{c}$, $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$, $\boldsymbol{b} = \boldsymbol{c} \times \boldsymbol{a}$
- Get [xyz] as weighted sum of a,b,c
- Stuff along **a** stays the same,
- Results along **b** & **c** based on sinθ and cosθ portions along **b** & **c**

$$\begin{bmatrix} x'\\ y'\\ z'\\ z' \end{bmatrix} = a\left(a \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) + b\left(b \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}\cos\theta - c \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}\sin\theta\right) + c\left(b \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}\sin\theta + c \cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix}\cos\theta\right)$$
$$= (aa^{T} + bb^{T}\cos\theta - bc^{T}\sin\theta + cb^{T}\sin\theta + cc^{T}\cos\theta)\begin{bmatrix} x\\ y\\ z \end{bmatrix}$$
 "still need method for finding b,c"

Alternatively (Equivalently):

Think of [*b*,*c*,*a*] as a 3x3 basis.

- Move/rotate into **abc**'s _____ reference frame.
- Do spin on 'local' z axis~

 $\begin{vmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{vmatrix} = [\mathbf{b} \ \mathbf{c} \ \mathbf{a}] \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \\ \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$

Rotate back out -

a axis

"ok, but this math is still not concise."

Challenges with the Space of Rotations

Matrix Disadvantages

Great for some systems (batch rendering), but not ideal for animation, gameplay, or physics code.

- Non-compact (9 floats for only 3DOF)
- Numerical Drift, non-orthonormal over time
- Getting meaningful information non-trivial?
 - Extracting an axis of rotation by eigenvector
- Interpolation between orientations (keyframes)

Is there a better way to be working with rotations/orientations?

 $\boldsymbol{R} = \begin{bmatrix} R\boldsymbol{x}_{x} & R\boldsymbol{y}_{x} & R\boldsymbol{z}_{x} \\ R\boldsymbol{x}_{y} & R\boldsymbol{y}_{y} & R\boldsymbol{z}_{y} \\ R\boldsymbol{x}_{z} & R\boldsymbol{y}_{z} & R\boldsymbol{z}_{z} \end{bmatrix}$

y,p,r = 0,0,0

45,0,0

Ordered sequence of rotations on 3 fixed main axes.

- Ideal representation for many game systems:
 - Standing NPC (yaw==heading)
 - Camera AI,
 - Helicopter flight.
- Convert to Matrix on the fly as necessary.

Yaw-Pitch-Roll – not ideal for general 3D

- Concatenating rotations: Done by matrix multiplication. Converting back to YPR? ⁽³⁾
- Smooth interpolation and comparing rotations. What's the angle between:

Consider pitch upward to 90:

Could be: [0 90 0] or [45 90 -45] or [n 90 -n] (any n)

Angle Axis

Axis Angle has Potential:

- General 3D
- Compact (drift averse)
- Inversion and Interpolation easy (just modify angle)

Issues:

- Specifics of the encoding (angle as separate number or axis length?).
- Transforming points shouldn't be clumbsy.
- Need a better/cleaner conversion to matrix.
- How can we "multiply" (combine) two Axis Angle rotations??? ...

Combining Angle Axis Rotations

It's Tricky ...

Combining Angle Axis Rotations

It's Tricky **Because**...

$$[010],90$$
 and $[100],90 = \dots$

Order of rotations makes a difference...

Yikes. Is there any mathematics wizardry that can deal with this?

Quaternions – Mathematics of Rotations

Quaternions – Mathematics of Rotations

- Practical and Efficient (get the job done). Provides the machinery your program uses for rotational operations.
- Industry-wide standard algebraic system for dealing with rotations in 3D. (existing code, popular engines). *You'll need this*.
- Geometric Algebra encompass (and surpass) quaternions.
 - Still worth studying quats (stepping stone)
- A bit abstract (4D and complex numbers). Best to think visually/spatially.

Quaternions – not too complex 😳

- Like complex numbers a+bi, but with $3 \perp$ sqrts of -1: i, j, k
- ii=jj=kk=ijk=-1 , so ij=k , ji=-k , jk=i, ki=j
- Numbers of the form: q = a + bi + cj + dk (math text notation)
- Isomorphic to Clifford Algebra R_{3+} : $q = a + be_{23} + ce_{31} + de_{12}$
- In Practice: q = xi+yj+zk+w (graphics/gamedev convention)
- Quaternion multiplication:

$$ab = \frac{(+a_x b_w + a_y b_z - a_z b_y + a_w b_i)i}{+(-a_x b_z + a_y b_w + a_z b_x + a_w b_j)j}$$
$$+(+a_x b_y - a_y b_x + a_z b_w + a_w b_k)k$$
$$+(-a_x b_x - a_y b_y - a_z b_z + a_w b_w)$$

Connection to Rotations may not be obvious yet...

Quaternions as Bivector, Scalar [**v**,w]

Equivalent to write quaternion as a bivector, scalar pair:

- Group the xyz elements into a 3D bivector **v** alongside w. Instead of: $[q_x, q_y, q_z, q_w]$, its now: $[q_v, q_w]$
- Quaternion multiplication equivalent to: $ab = [a_v, a_w] * [b_v, b_w] = [a_v \times b_v + a_v b_w + a_w b_v , -a_v \cdot b_v + a_w b_w]$ Cross Product Dot Product

some familiar operations

Unit Quaternions and Rotations

Use Quaternions on unit 4D hypersphere $(x^2+y^2+z^2+w^2 == 1)$:

• rotation/orientation with axis **a** and angle θ :

$$\boldsymbol{q} = \left[\boldsymbol{a} \sin\left(\frac{\theta}{2}\right), \cos\left(\frac{\theta}{2}\right) \right]$$

- Length of bivector part proportional to sin of half of angle.
- Value of scalar part *w* keeps quaternion at unit length (or cos of same half angle).

May be easier to visualize just using the (3D) bivector \boldsymbol{v} component. But its not a regular (Euclidean) 3-space.

Unit Quaternions and Rotations

Double Coverage:

Rotation around axis **a** and angle θ would produce the same result as rotation around axis -**a** and angle $-\theta$.

Therefore, q and -q represent the same rotation.

Inverse:

Rotation around axis $-\mathbf{a}$ and angle θ (or around \mathbf{a} by $-\theta$) would give the opposite rotation. Since q is of unit length just use conjugate:

$$q^{-1} = conj(q) = [-x, -y, -z, w] = [-v, w] = \left[-a\sin\left(\frac{\theta}{2}\right), \cos\left(\frac{\theta}{2}\right)\right]$$

Examples Revisited with Quaternions:

Examples Revisited now with Quaternions:

Numerical values added just to see that the quaternion math indeed matches expectations.

Rotating Points/Vectors with Quaternions

Representation	Combine Rotations a,b	Rotate points or vectors (v)
Matrix:	M _b M _a	Μv
Quaternion:	$\mathbf{q}_{\mathbf{b}} \mathbf{q}_{\mathbf{a}}$	q v q ⁻¹

- Matrix multiplication applies to both rotating points/vectors and other matrices.
- Rotate a point or vector \mathbf{v} by treating it as a quaternion [\mathbf{v} ,0] and multiply by rotation and conjugate on the left and right sides respectively. Or use quaternion-to-matrix conversion.

$$\begin{aligned} \mathbf{Q} \mathbf{V} \mathbf{Q}^{-1} & \mathbf{q} \mathbf{v} \mathbf{q}^{-1} = \left[\mathbf{a} \sin \frac{\theta}{2}, \cos \frac{\theta}{2} \right] [\mathbf{v}, 0] \left[-\mathbf{a} \sin \frac{\theta}{2}, \cos \frac{\theta}{2} \right] & \overset{\text{ab} = [a_v \times b_v + a_v b_w + a_w b_w, -a_v \cdot b_v + a_w b_w]}{\text{quaternion multiplication (bivector-scalar style)}} \\ & = \left[\sin \frac{\theta}{2} \mathbf{a} \times \mathbf{v} + \cos \frac{\theta}{2} \mathbf{v}, -\sin \frac{\theta}{2} \mathbf{a} \cdot \mathbf{v} \right] \left[-\mathbf{a} \sin \frac{\theta}{2}, \cos \frac{\theta}{2} \right] & \overset{\text{Not}}{\mathbf{v}^{0}} \overset{\text{Not}}{\mathbf{$$

= $[\cos\theta (\mathbf{a} \times \mathbf{v} \times \mathbf{a}) + \sin\theta (\mathbf{a} \times \mathbf{v}) + (\mathbf{a} \cdot \mathbf{v})\mathbf{a}, 0]$ after

after simplifying

Applications

. . .

Quaternions can replace most Rotation Matrices

- Cameras or any general objects with position and orientation.
- Rigid Bodies physics engines mostly use vec/quat pairs
- Vertex buffers instead of tangent, bitangent, normal can use:
 struct Vertex {

```
float3 position; // location in mesh reference frame
float4 orientation; // quaternion tangent space basis
float2 texcoord; // uv's
```

MARCH 17-21, 2014 GDCONF.COM

Orientation Map

- Extention of normalmap
- rgba encodes orientation.

Disc with specular $(T \cdot L)$ and diffuse $(N \cdot L)$

Disclaimer: just curiosity research, not sure how useful.

SLERP – Spherical Linear Interpolation

- Smooth transition between orientations q_0, q_1
 - Double Coverage Issue: Use $-q_1$ instead of q_1 if closer to q_0
- Normalized Lerp (nlerp) often sufficient

 $q_t = normalize(q_0(1-t) + q_1(t))$

• Used by animation systems (blend keyframes)

Resulting Skinned Animation

Quats – they do Addition too...

Updating state to the next time step.

- **Position:** $p_{t+dt} = p_t + velocity * dt$
- Orientation (spin ω):

Could Build a Quat for Multiplication

$$s = \left[\frac{\omega}{\|\omega\|} \sin(\frac{\|\omega\| dt}{2}), \cos(\frac{\|\omega\| dt}{2})\right]$$

$$q_{t+dt} = s * q_t$$

Proof it's the same: $\lim_{(\|\omega\| \ dt) \to 0} s \to \left[\frac{\omega}{2} \ dt, 1\right]$ $s * q_t = [0001] * q_t + \left[\frac{\omega}{2} \ dt, 0\right] * q_t$ $s * q_t = q_t + \left[\frac{\omega}{2}, 0\right] * q_t \ dt$

Or Add Derivative $q_{t+dt} = q_t + \frac{dq}{dt} dt$ $q_{t+dt} = q_t + \frac{\omega}{2} q_t dt$

Ok but why?...

Quat Application: Time Integration (no drift)

Spin ω_t is not constant!!

 $q_{t+dt} = q_t + \frac{\omega(q_t)}{2} * q_t * dt$ Forward Euler

only looks at starting spin

Takes samples over the timestep

Orientation Updates (Euler vs RK4)

Forward Euler:

- Spin drifts toward
 - principle axis
- Energy gained

Runge Kutta

- Spin orbits as expected
- Energy stays constant

Watch GDC 2013 Math Tutorial for full explanation of inertia tensor, time integration, angular momentum, rk4, ...

Rotation that takes one <u>direction</u> v_0 to another v_1

Diagonalization of Symmetric Matrices

For symmetric matrix **S** find **D**_{*r*}**R**: $D = R S R^{-1}$

- Iterative approach [Jacobi 1800s].
- Algorithm can accumulate directly into Matrix or a Quaternion (3D).

Eigenvalues are entries of diagonal part. If not all equal, this may be interpreted as an orientation for the matrix in some contexts.

> "Orientations may show up in new interesting places"

Orientation of a Point Cloud

- Compute covariance
- Diagonalize to get orientation.
- Permute by eigenvalues for long, med, short axes.

$$cov = \sum vv^{T} = \sum \begin{bmatrix} v_{x}^{2} & v_{x}v_{y} & v_{x}v_{z} \\ v_{y}v_{x} & v_{y}^{2} & v_{y}v_{z} \\ v_{z}v_{x} & v_{z}v_{y} & v_{z}^{2} \end{bmatrix}$$

AI: Optimal bombing run.

Visualize Inertia Properties

To debug physics behavior of rigid body:

- Diagonalize Inertia Tensor (symmetric matrix)
- Draw box over object with resulting orientation
- Eigenvalues are box dimensions

Irregular Shape

Inertia Overlay

Dual Quaternions

- Add a $\sqrt{0}$ or ε , $\varepsilon^2 = 0$
- $q = [x\mathbf{i}, y\mathbf{j}, z\mathbf{k}, w, x'\mathbf{i}\varepsilon, y'\mathbf{j}\varepsilon, z'\mathbf{k}\varepsilon, w'\varepsilon]$
- Put half translation \boldsymbol{t} in dual part $\boldsymbol{t}'' = [0,0,0,1, \quad tx/2, ty/2, tz/2,0]$
- Extend rotation r to dual quat r'' = [r, 0,0,0,0]
- Multiply trans and rot dual quaternions $q^{\prime\prime}=t^{\prime\prime}r^{\prime\prime}$

Rotation and Trans in a single 8D number $q^{\prime\prime}$

To be continued (in Gino's IK session) ...

Dual Quat Screw Motion

Matrix Dual Quat

Working with Rotations - Conclusion

- Rotations can be tricky (*don't blame math*)
- Matrices work
- Quaternions work, more concise, more uses
- Be Aware, Be Precise:
 - who to multiply
 - what order to use
 - when to invert

Now go and do cool 3D stuff ©

Q & A

Raise your hand if you have any questions now!

