
Working With 3D Rotations

Stan Melax
Graphics Software Engineer, Intel

Human Brain is wired for Spatial Computation

A childhood IQ test question

Rotations Translations

“I don’t need to ask
for directions”

a) b) c)

Which shape
is the same:

Agenda

● Rotations and Matrices (hopefully review)

● Combining Rotations

● Matrix and Axis Angle

● Challenges of deep Space (of Rotations)

● Quaternions

● Applications

Terminology Clarification

Linear Angular

Object Pose Position (point) Orientation

A change in Pose Translation (vector) Rotation

Rate of change Linear Velocity Spin

Preferred usages of various terms:

also: Direction specifies 2 DOF, Orientation specifies all 3 angular DOF.

Rotations Trickier than Translations

(non-commutative)

Rotations Translations

a then b == b then a x then y != y then x

● Programming with rotations also more challenging!

2D Rotation θ

cos θ

s
in

 θ

 1,0

 1,1

Rotate [1 0] by θ about origin

[cos(θ) sin(θ)]

θ

2D Rotation θ

sin θ

c
o
s
 θ

 -1,1 0,1

Rotate [0 1] by θ about origin

[-sin(θ) cos(θ)]

θ

2D Rotation of an arbitrary point

Rotate about origin by θ

= cos θ + sin θ

2D Rotation of an arbitrary point

𝑥

𝑦

Rotate
𝑥
𝑦 about origin by θ

𝑥′, 𝑦′
𝑥′ = 𝑥 cos θ − 𝑦 sin θ

𝑦′ = 𝑥 sin θ + 𝑦 cos θ

2D Rotation Matrix

𝑥

𝑦

𝑥′
𝑦′
=
cos θ − sin θ
sin θ cos θ

𝑥
𝑦

Rotate
𝑥
𝑦 about origin by θ

𝑥′, 𝑦′
𝑥′ = 𝑥 cos θ − 𝑦 sin θ

𝑦′ = 𝑥 sin θ + 𝑦 cos θ

Matrix
cos θ − sin θ
sin θ cos θ

 is rotation by θ

2D Orientation

𝒙

Yellow grid placed over
first grid but at angle of θ

cos θ − sin θ
sin θ cos θ

𝒚

Columns of the matrix are
the directions of the axes.

Matrix is yellow grid’s Orientation

2D Passive Transformation

𝒙′, 𝒚′

𝑥′
𝑦′
=
cos θ − sin θ
sin θ cos θ

𝑥
𝑦

Basis:
cos θ − sin θ
sin θ cos θ

𝒙, 𝒚

𝑥′
𝑦′
,
𝑥
𝑦 both same point but

In different reference frames

(note: exact same math as before)

3D Rotation around Z axis

𝑥

𝑥′
𝑦′

𝑧′

=
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝑥
𝑦
𝑧

 𝑥′, 𝑦′

𝑍 𝑎𝑥𝑖𝑠

𝑦

𝑧

Can Rotate around X and Y too

𝑥

𝑥′
𝑦′

𝑧′

=
1 0 0
0 cos θ −sin θ
0 sin θ cos θ

𝑥
𝑦
𝑧

𝒙′, 𝒚′,𝒛′

X 𝑎𝑥𝑖𝑠
𝑦

𝑧

𝑥
𝑥′
𝑦′

𝑧′

=
cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ

𝑥
𝑦
𝑧

 𝒙′, 𝒚′,𝒛′ 𝑦

0 .7 .7 0 0 0 .7 .7

Rotating Objects (changing orientation)

90˚ on X 90˚ on Y

.7 0 0 .7 0 .7 0 .7

[.5 .5 .5 .5] 0 0 0 1

Rotations:

Orientations:

90˚ on Z

0 0 .7 .7

1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
−1 0 0

−1 0 0
0 0 1
0 1 0

Quat rotations:
orientations:

0 0 1
0 1 0
−1 0 0

1 0 0
0 0 −1
0 1 0

0 −1 0
1 0 0
0 0 1

Matrices used for both rotations and orientations

Row vs Column Conventions
OpenGL and most math books use column vectors:

v’ = M v = B A v

Some engines, APIs (DirectX) use row convention:

v’ = v MT = v AT BT

All the same.

C
O
L
U
M
N

Combining Rotations

Combine a sequence of Rotations A,B,…

Rotate v by A, then B, then C...

 = C (B (Av))

Mathematically we know

C (B (A v)) == (C B A) v

So with matrix-matrix multiplication let:

 R = C B A

R is a single rotation that is the same as rotating
by A, then by B then C.

𝑩𝑤𝑜𝑟𝑙𝑑 𝑨𝑤𝑜𝑟𝑙𝑑

𝑨𝑙𝑜𝑐𝑎𝑙 𝑩𝑙𝑜𝑐𝑎𝑙

Multiplication Order:
90˚ on

“World” X
90˚ on
World Y

90˚ on
“Local” Z

(dice side 3)

90˚ on
Local Y

(dice side 2)

W
O
R
L
D

L
O
C
A
L

World Coordinate Frame

right side
of page

top of page

Z

Y

X

Dice Coordinate Frame

Z

Y

X

𝑑𝑖𝑐𝑒𝑛𝑒𝑤 = 𝑩𝑤𝑜𝑟𝑙𝑑 ∗ 𝑨𝑤𝑜𝑟𝑙𝑑 ∗ 𝑑𝑖𝑐𝑒
𝑩𝑤𝑜𝑟𝑙𝑑 𝑨𝑤𝑜𝑟𝑙𝑑

𝑑𝑖𝑐𝑒𝑛𝑒𝑤 = 𝑑𝑖𝑐𝑒 ∗ 𝑨𝑙𝑜𝑐𝑎𝑙 ∗ 𝑩𝑙𝑜𝑐𝑎𝑙

𝑨𝑙𝑜𝑐𝑎𝑙 𝑩𝑙𝑜𝑐𝑎𝑙

Multiplication Order: Math Equations
90˚ on

“World” X
90˚ on
World Y

Both produce: 120˚ on [1 1 1]

90˚ on
“Local” Z

(dice side 3)

90˚ on
Local Y

(dice side 2)

W
O
R
L
D

L
O
C
A
L

= * *

= * *

Example When to use Local frame

● Player “pulls up” on
flight stick.

● Pitch upward about
object wing (x) axis.

● World x irrelevant

● Multiply rotation (about
x) on the right hand
side

Sidenote: a point doesn’t
have an orientation, so never
do this for points.

Math:

𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

=
𝑐𝑟𝑢𝑖𝑠𝑒𝑖𝑛𝑔
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

∗
𝑝𝑖𝑡𝑐ℎ_𝑢𝑝
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

= *

1 0 0
0 cosθ −sin θ
0 sin θ cos θ

Find Rotation R Between Orientations A and B

need to be more specific

● Have an object with orientation A, what rotation R will change it
to have orientation B?

𝑹 = 𝑩𝑨−𝟏

● Given a direction v in reference frame A, what rotation R will
show how v points according to B?

𝑹 = 𝑩−𝟏𝑨

Be aware of all the details of the problem to be solved.

Rotating (Reorienting) a Rotation

Machine that
rotates an
object by 𝑟𝑜𝑡 :

Apply 45˚
Tilt to the
Machine:

𝑟𝑜𝑡

180 𝑟𝑜𝑡 45 𝑡𝑖𝑙𝑡

180 𝑟𝑜𝑡 45 𝑡𝑖𝑙𝑡

Rotating a Rotation – Its Different

Neither of these
multiplication

sequences work



Rotating a Rotation: Decompose Steps

Rotate duck into and back out of the machine’s reference frame:

Tilted
Machine:

How to calculate
what this new
rotation will be?

Same
Result!

Rotating a Rotation: The Mathematics

= *

= * * *

:

:

𝒏𝒆𝒘 𝑑𝑢𝑐𝑘′

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 = 𝑟𝑜𝑡 ∗

𝑑𝑢𝑐𝑘
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝒏𝒆𝒘 𝑑𝑢𝑐𝑘′′ = 𝑡𝑖𝑙𝑡 ∗ 𝑟𝑜𝑡 ∗ 𝑡𝑖𝑙𝑡−1 ∗ 𝑑𝑢𝑐𝑘

U
P
R
I
G
H
T

T
I
L
T
E
D

Initial
equation

equation w tilt

Rotating a Rotation: The Mathematics

= * *

𝑟𝑜𝑡𝑡𝑖𝑙𝑡𝑒𝑑 = 𝑡𝑖𝑙𝑡 ∗ 𝑟𝑜𝑡 ∗ 𝑡𝑖𝑙𝑡
−1

Now drop the duck…

Matrix & Axis Angle

3D Orientation / Rotation Matrix R

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

𝑹𝒚

𝑹𝒛

𝑹𝒙 General form of Rotation Matrix:
• Orthonormal basis: 𝑹𝒙 𝑹𝒚 𝑹𝒛
• 𝑹𝒛 = 𝑹𝒙 × 𝑹𝒚 etc.
• Determinant(R)==1
• Inverse(R) == Transpose(R)
• Has a corresponding axis of rotation

𝒙

𝒚

𝒛

Rotation Matrix – Finding its Axis Angle

𝒙

𝒚

𝒛

 𝒂𝒙𝒊𝒔, 𝜽

𝜽

 𝒂𝒙𝒊𝒔 will be an eigenvector of R

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

𝑹𝒚

𝑹𝒛

𝑹𝒙

𝒙

𝒚

𝒛

Example of corresponding Matrix and Axis Angle

𝑹 =
0 0 1
1 0 0
0 1 0

𝑹𝒚

𝑹𝒛

𝑹𝒙

𝒙

𝒚

𝒛

 𝒂𝒙𝒊𝒔, 𝜽 = 𝟏 𝟏 𝟏 , 𝟏𝟐𝟎°

𝒙

𝒚

𝒛

𝜽

To check, verify: 𝒂𝒙𝒊𝒔 == 𝑹 ∗ 𝒂𝒙𝒊𝒔

Matrix from general axis a, angle θ

𝒂 𝑎𝑥𝑖𝑠

Matrix for a,θ ?

Matrix from general axis a, angle θ

𝒂 𝑎𝑥𝑖𝑠

[𝑥, 𝑦, 𝑧]

?

How would axis/angle rotate a point [𝑥, 𝑦, 𝑧]?

Matrix from general axis a, angle θ
• Find b,c unit vecs a,b,c orthonormal

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂
𝒂 𝑎𝑥𝑖𝑠

[𝑥, 𝑦, 𝑧]

Matrix from general axis a, angle θ
• Find b,c unit vecs a,b,c orthonormal

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂

• Get [xyz] as weighted sum of a,b,c

𝒂 𝑎𝑥𝑖𝑠

[𝑥, 𝑦, 𝑧]

Matrix from general axis a, angle θ
• Find b,c unit vecs a,b,c orthonormal

𝑥′
𝑦′

𝑧′

= 𝒂 𝒂 ∙
𝑥
𝑦
𝑧
+ 𝒃 𝒃 ∙

𝑥
𝑦
𝑧
cos θ − 𝒄 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 𝒃 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 ∙

𝑥
𝑦
𝑧
cos θ

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂

• Get [xyz] as weighted sum of a,b,c
• Stuff along a stays the same,
• Results along b & c based on sinθ and

cosθ portions along b & c

𝒂 𝑎𝑥𝑖𝑠

[𝑥, 𝑦, 𝑧]

Matrix from general axis a, angle θ
• Find b,c unit vecs a,b,c orthonormal

𝑥′
𝑦′

𝑧′

= 𝒂 𝒂 ∙
𝑥
𝑦
𝑧
+ 𝒃 𝒃 ∙

𝑥
𝑦
𝑧
cos θ − 𝒄 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 𝒃 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 ∙

𝑥
𝑦
𝑧
cos θ

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂

𝑥′
𝑦′

𝑧′

= 𝒂𝒂𝑇 + 𝒃𝒃𝑇 cos θ − 𝒃𝒄𝑇 sin θ + 𝒄𝒃𝑇 sin θ + 𝒄𝒄𝑇 cos θ
𝑥
𝑦
𝑧

• Get [xyz] as weighted sum of a,b,c
• Stuff along a stays the same,
• Results along b & c based on sinθ and

cosθ portions along b & c

𝒂 𝑎𝑥𝑖𝑠

[𝑥, 𝑦, 𝑧]

“still need method
for finding b,c”

=

𝑏𝑥 𝑐𝑥 𝑎𝑥
𝑏𝑦 𝑐𝑦 𝑎𝑦
𝑏𝑧 𝑐𝑧 𝑎𝑧

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
𝑎𝑥 𝑎𝑦 𝑎𝑧

𝑥
𝑦
𝑧

𝑥′, 𝑦′, 𝑧′

𝒂 𝑎𝑥𝑖𝑠

𝒃

𝒄

𝑥′
𝑦′

𝑧′

= 𝒃 𝒄 𝒂
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝒃
𝒄
𝒂

𝑥
𝑦
𝑧

Alternatively (Equivalently):

Think of [b,c,a] as a 3x3 basis.

● Move/rotate into abc’s
reference frame.

● Do spin on ‘local’ z axis

● Rotate back out

[𝑥, 𝑦, 𝑧]

3x3 Rotation Matrix

Matrix from general axis a, angle θ

“ok, but this math is still not concise.”

Challenges with the Space of Rotations

Matrix Disadvantages

Great for some systems (batch rendering), but not
ideal for animation, gameplay, or physics code.

● Non-compact (9 floats for only 3DOF)

● Numerical Drift, non-orthonormal over time

● Getting meaningful information non-trivial?
● Extracting an axis of rotation by eigenvector

● Interpolation between orientations (keyframes)

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

Is there a better way to be working with rotations/orientations?

Yaw-Pitch-Roll (Euler angles)

y,p,r = 0,0,0 45,0,0 45,0,45

• Ordered sequence of rotations on 3 fixed main axes.
• Ideal representation for many game systems:

• Standing NPC (yaw==heading)
• Camera AI,
• Helicopter flight.

• Convert to Matrix on the fly as necessary.

Yaw-Pitch-Roll – not ideal for general 3D

Could be:
[0 90 0] or

[45 90 -45] or
[n 90 –n] (any n)

[20 80 -20] [-60 80 60]

Consider pitch
upward to 90:

and

● Concatenating rotations: Done by matrix
multiplication. Converting back to YPR? 

● Smooth interpolation and comparing rotations.
What’s the angle between:

Numerically distant, but
Orientations similar!

Angle Axis
Axis Angle has Potential:

● General 3D

● Compact (drift averse)

● Inversion and Interpolation easy (just modify angle)

Issues:

● Specifics of the encoding (angle as separate number or axis length?).

● Transforming points shouldn’t be clumbsy.

● Need a better/cleaner conversion to matrix.

● How can we “multiply” (combine) two Axis Angle rotations??? …

Combining Angle Axis Rotations

[100],180° then [010],180° [0 0 1],180°

[1 0 0],10° then [0 1 0],10° ~= [1 1 0],14 °

=

Small Angles:

Larger Angles:

“Result axis/angle
is almost like

vector addition on
the xy plane”

“Hmmm,
Combining
X and Y
somehow
make Z”

It’s Tricky ...

Tilt, Turn, No Roll.

[100],90 and [010],90 = ...

[010],90 and [100],90 = ...

Order of rotations makes a difference...

Combining Angle Axis Rotations It’s Tricky
Because…

[100],90 and [010],90 = [1 1 -1],120

[010],90 and [100],90 = [1 1 1],120

Yikes. Is there any mathematics wizardry that can deal with this?

Combining Angle Axis Rotations It’s Tricky
Because

Rotations
are Tricky!

Quaternions – Mathematics of Rotations

Quaternions – Mathematics of Rotations

● Practical and Efficient (get the job done). Provides the
machinery your program uses for rotational operations.

● Industry-wide standard algebraic system for dealing with
rotations in 3D. (existing code, popular engines). You’ll
need this.

● Geometric Algebra encompass (and surpass) quaternions.

● Still worth studying quats (stepping stone)

● A bit abstract (4D and complex numbers). Best to think
visually/spatially.

Quaternions – not too complex 
● Like complex numbers a+bi, but with 3 ⊥ sqrts of -1: i,j,k

● ii=jj=kk=ijk=-1 , so ij=k , ji=-k , jk=i, ki=j

● Numbers of the form: q= a+bi+cj+dk (math text notation)

● Isomorphic to Clifford Algebra R3+: q= a+be23+ce31+de12

● In Practice: q= xi+yj+zk+w (graphics/gamedev convention)

● Quaternion multiplication:

𝒂𝒃 =

+𝑎𝑥𝑏𝑤 + 𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦 +𝑎𝑤 𝑏𝑖 𝒊

+ −𝑎𝑥𝑏𝑧 + 𝑎𝑦𝑏𝑤 + 𝑎𝑧𝑏𝑥 +𝑎𝑤 𝑏𝑗 𝒋

+ +𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 + 𝑎𝑧𝑏𝑤 +𝑎𝑤 𝑏𝒌 𝒌

+ −𝑎𝑥𝑏𝑥 − 𝑎𝑦𝑏𝑦 − 𝑎𝑧𝑏𝑧 +𝑎𝑤 𝑏𝑤

 Connection to Rotations may not be obvious yet…

Quaternions as Bivector,Scalar [v,w]

Equivalent to write quaternion as a bivector,scalar pair:

● Group the xyz elements into a 3D bivector v alongside w.

Instead of: 𝑞𝑥, 𝑞𝑦 , 𝑞𝑧, 𝑞𝑤 , its now: 𝒒𝒗, 𝑞𝑤

● Quaternion multiplication equivalent to:
𝒂𝒃 = 𝒂𝒗, 𝑎𝑤 ∗ 𝒃𝒗, 𝑏𝑤 = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗 , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤

Cross Product Dot Product

some familiar operations

Unit Quaternions and Rotations
Use Quaternions on unit 4D hypersphere (𝑥2+𝑦2+𝑧2+𝑤2 == 1):

● rotation/orientation with axis a and angle θ:

𝒒 = 𝒂 sin
𝜃

2
, cos
𝜃

2

● Length of bivector part proportional to sin of half of angle.

● Value of scalar part w keeps quaternion at unit length (or cos of same half angle).

May be easier to visualize just using the (3D) bivector v component.

But its not a regular (Euclidean) 3-space.

Unit Quaternions and Rotations

Double Coverage:

Rotation around axis a and angle θ would produce the same result
as rotation around axis -a and angle –θ.

Therefore, q and –q represent the same rotation.

Inverse:

Rotation around axis -a and angle θ (or around a by - θ) would give
the opposite rotation. Since q is of unit length just use conjugate:

𝒒−𝟏 = 𝒄𝒐𝒏𝒋 𝒒 = −𝑥,−𝑦, −𝑧, 𝑤 = [−𝑣,𝑤] = −𝒂 sin
𝜃

2
, cos
𝜃

2

Examples Revisited with Quaternions:

[0 1 0 0]*[1 0 0 0]=[0 0 -1 0]

[0 0.1 0 0.99] * [0.1 0 0 0.99] ~= [0.1 0.1 -0.01 0.99]

=

Small Angles:

Larger Angles:

approx 10° on X
then 10° on Y

𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗 , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤 = 0 1 0 × 1 0 0 + 0 + 0 , 0 + 0 = 0 0 − 1 0

approx 15°
on [1 1 -.1]

Only Cross Product Matters here

[1 0 0 0] [0 1 0 0]

180 on X 180 on Y 180 on -Z

𝒂 𝒃 = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗 , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤 Cross and dot Product near zero:

Examples Revisited now with Quaternions:

.7 0 0 .7 0 .7 0 .7

0.7 0 0 .7 ∗ 0 .7 0 .7 = [.5 .5 .5 .5]

90˚ on X 90˚ on Y

90˚ on X 90˚ on Y

.7 0 0 .7 0 .7 0 .7

120˚ on [1 1 1]

0 .7 0 .7 ∗ .7 0 0 .7 = [0.5 0.5 − 0.5 0.5]

120˚ on [1 1 -1]

Numerical values added just to see that the quaternion math indeed matches expectations.

Rotating Points/Vectors with Quaternions

● Matrix multiplication applies to both rotating points/vectors and
other matrices.

● Rotate a point or vector v by treating it as a quaternion [v,0] and
multiply by rotation and conjugate on the left and right sides
respectively. Or use quaternion-to-matrix conversion.

Representation Combine
Rotations a,b

Rotate points or
vectors (v)

Matrix: Mb Ma M v

Quaternion: qb qa q v q-1

qvq-1 𝒒𝒗𝒒−𝟏 = 𝐚 sin
𝜃

2
, cos
𝜃

2
𝒗, 0 −𝐚 sin

𝜃

2
, cos
𝜃

2

= sin
𝜃

2
𝐚 × 𝒗 + cos

𝜃

2
 𝒗,− sin

𝜃

2
𝒂 ∙ 𝒗 −𝐚 sin

𝜃

2
 , cos
𝜃

2

ab = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗 , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤

= sin
𝜃

2
𝐚 × 𝒗 ×−𝐚 sin

𝜃

2
+ cos
𝜃

2
 𝒗 × −𝐚 sin

𝜃

2
+ cos
𝜃

2
 sin
𝜃

2
𝐚 × 𝒗 + cos

𝜃

2
cos
𝜃

2
 𝒗 + −𝐚 sin

𝜃

2
 sin
𝜃

2
−𝒂 ∙ 𝒗 , −𝒂 ∙ 𝒗 sin

𝜃

2
cos
𝜃

2
+ sin
𝜃

2
𝐚 × 𝒗 ∙ 𝐚 sin

𝜃

2
+ cos
𝜃

2
 𝒗 ∙ 𝐚 sin

𝜃

2

= − sin2
𝜃

2
𝐚 × 𝒗 × 𝐚 + 2 cos

𝜃

2
 sin
𝜃

2
𝐚 × 𝒗 + cos2

𝜃

2
 𝒗 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚, 0

= cos2
𝜃

2
𝐚 × 𝒗 × 𝐚 − sin2

𝜃

2
𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + cos2

𝜃

2
𝒂 ∙ 𝒗 𝐚 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚, 0

= − sin2
𝜃

2
𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + cos2

𝜃

2
 𝒗 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚, 0

= cos 𝜃 𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + 𝒂 ∙ 𝒗 𝐚 , 0 after simplifying

cancel out

cos2 + sin2 = 1 cos2
𝜃

2
− sin2
𝜃

2
= cos𝜃

quaternion multiplication (bivector-scalar style)

qvq-1: Rotating Points/Vectors 𝑞 = 𝐚 sin
𝜃

2
, cos
𝜃

2

𝑞𝑣𝑞−1 = cos 𝜃 𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + 𝒂 ∙ 𝒗 𝐚 , 0

𝒂 𝑎𝑥𝑖𝑠

𝒗

Quaternion
multiplication

qvq-1 transforms
v by rotation q

Three Orthogonal Vectors
Portion along a
stays the same

v lies in plane of 2
of these basis vectors:
 𝑣 = 𝐚 × 𝒗 × 𝐚 + 𝒂 ∙ 𝒗 𝐚

sum weighted
by sin and cos

Applications

Quaternions can replace most Rotation Matrices

● Cameras or any general objects with position and orientation.

● Rigid Bodies - physics engines mostly use vec/quat pairs

● Vertex buffers instead of tangent,bitangent,normal can use:
struct Vertex {

float3 position; // location in mesh reference frame

float4 orientation; // quaternion tangent space basis

float2 texcoord; // uv’s

...

Orientation Map
● Extention of

normalmap

● rgba encodes
orientation.

Tangents T Normals N Orientations

Disc with specular (𝑇 ∙ 𝐿) and diffuse (𝑁 ∙ 𝐿)
Disclaimer: just
curiosity research,

not sure how useful.

SLERP – Spherical Linear Interpolation

● Smooth transition between orientations 𝑞0, 𝑞1
● Double Coverage Issue: Use −𝑞1 instead of 𝑞1 if closer to 𝑞0

● Normalized Lerp (nlerp) often sufficient
𝑞𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑞0 1 − 𝑡 + 𝑞1 𝑡)

● Used by animation systems (blend keyframes)

Key 0 Key 1

NLERP 0.5

Resulting Skinned Animation

t=0 t=0.5 t=1

Quats – they do Addition too…

Updating state to the next time step.

● Position: 𝑝𝑡+𝑑𝑡 = 𝑝𝑡 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡

● Orientation (spin 𝜔):

𝑞𝑡+𝑑𝑡 = 𝑠 ∗ 𝑞𝑡

𝑠 =
𝜔

𝜔
sin (
𝜔 𝑑𝑡

2
), cos (

𝜔 𝑑𝑡

2
)

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔

2
𝑞𝑡 𝑑𝑡

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝑑𝑞

𝑑𝑡
 𝑑𝑡

Could Build a Quat for Multiplication Or Add Derivative

lim
(𝜔 𝑑𝑡)→0

𝑠 →
𝜔

2
𝑑𝑡, 1

𝑠 ∗ 𝑞𝑡 = 0001 ∗ 𝑞𝑡 +
𝜔

2
𝑑𝑡, 0 ∗ 𝑞𝑡

𝑠 ∗ 𝑞𝑡 = 𝑞𝑡 +
𝜔

2
, 0 ∗ 𝑞𝑡 𝑑𝑡

Proof it’s the same:

Ok but why?...

Quat Application: Time Integration (no drift)

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 ∗ 𝑑𝑡

𝑘1 =
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡

𝑘2 =
𝜔(𝑞𝑡 + 𝑘1 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘1 ∗

𝑑𝑡

2
)

𝑘3 =
𝜔(𝑞𝑡 + 𝑘2 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘2 ∗

𝑑𝑡

2
)

𝑘4 =
𝜔(𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

2
∗ (𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 + 𝑘1 ∗
𝑑𝑡

6
+ 𝑘2 ∗

𝑑𝑡

3
+ 𝑘3 ∗

𝑑𝑡

3
+ 𝑘4 ∗

𝑑𝑡

6

Forward Euler Runge Kutta

Spin 𝜔𝑡 is not constant!!

Takes samples over the timestep only looks at starting spin

more quat
additions

Orientation Updates (Euler vs RK4)

Forward Euler:
• Spin drifts

toward
principle axis

• Energy gained

Runge Kutta
• Spin orbits as

expected
• Energy stays

constant

Watch GDC 2013 Math Tutorial for full explanation of inertia tensor, time integration, angular momentum, rk4, …

Rotation that takes one direction 𝒗𝟎 to another 𝒗𝟏

𝒗𝟎

𝒗𝟏 𝒗𝟎 × 𝒗𝟏

𝒗𝟎

𝒗𝟎 × 𝒗𝟏

When 𝒗𝟎 and 𝒗𝟏 get close,
𝒂 = 𝒗𝟎 × 𝒗𝟏 becomes small
𝒅 = 𝒗𝟎 ∙ 𝒗𝟏 goes to 1.

𝒒 =
𝒂

𝒂
sin
acos (𝑑)

2
, cos
acos (𝑑)

2

𝒒 =
𝒂

2(1 + 𝑑)
,
2(1 + 𝑑)

2

Cross product to find axis 𝒂
Less stable
when d ~ 1

What if
𝒂 was 0

𝒒 = 𝒗𝟎 × 𝒗𝒎𝒊𝒅, 𝒗𝟎 ∙ 𝒗𝒎𝒊𝒅

Let: 𝒗𝒎𝒊𝒅 =
𝒗𝟎+𝒗𝟏

𝒗𝟎+𝒗𝟏

using
half
angle
formulas

GA style –
geometric
product
produces
rotation
versor

Ignore 𝒗𝟎 = −𝒗𝟏 case for now

Diagonalization of Symmetric Matrices

For symmetric matrix S find D,R:
𝑫 = 𝑹 𝑺 𝑹−1

● Iterative approach [Jacobi 1800s].

● Algorithm can accumulate directly into
Matrix or a Quaternion (3D).

Eigenvalues are entries of diagonal part.

If not all equal, this may be interpreted as an
orientation for the matrix in some contexts.

𝑎 𝑓 𝑒
𝑓 𝑏 𝑑
𝑒 𝑑 𝑐

𝑥 𝑦 𝑧 𝑤 ,
𝑎′ 0 0
0 𝑏′ 0
0 0 𝑐′

Rotate Off
Largest

diagonal?

No

Yes

“Orientations may show up
in new interesting places”

Orientation of a Point Cloud
● Compute covariance

● Diagonalize to get orientation.

● Permute by eigenvalues for
long,med,short axes.

x

y Principle Axes

𝒄𝒐𝒗 = 𝒗𝒗𝑻 =

𝑣𝑥
2 𝑣𝑥𝑣𝑦 𝑣𝑥𝑣𝑧

𝑣𝑦𝑣𝑥 𝑣𝑦
2 𝑣𝑦𝑣𝑧

𝑣𝑧𝑣𝑥 𝑣𝑧𝑣𝑦 𝑣𝑧
2

UI: Data from
Depth Sensor

AI: Optimal
bombing run.

Visualize Inertia Properties
To debug physics behavior of rigid body:

● Diagonalize Inertia Tensor (symmetric matrix)

● Draw box over object with resulting orientation

● Eigenvalues are box dimensions

Irregular Shape Inertia Overlay

Dual Quaternions
● Add a 0 or 𝜀, 𝜀2 =0

● 𝑞 = 𝑥𝒊, 𝑦𝒋 , 𝑧𝒌, 𝑤 , 𝑥′𝒊𝜺, 𝑦′𝒋𝜺, 𝑧′𝒌𝜺, 𝑤′𝜺

● Put half translation t in dual part
𝒕′′ = 0,0,0,1, 𝑡𝑥/2, 𝑡𝑦/2, 𝑡𝑧/2,0

● Extend rotation r to dual quat
𝒓′′ = 𝒓, 0,0,0,0

● Multiply trans and rot dual quaternions
𝒒′′ = 𝒕′′𝒓′′

Rotation and Trans in a single 8D number 𝒒′′

To be continued (in Gino’s IK session) ... Dual Quat

S
K
I
N
N
I
N
G

Matrix

Dual Quat Screw Motion

S
L
E
R
P

distant
axis

Working with Rotations - Conclusion

● Rotations can be tricky (don’t blame math)

● Matrices work

● Quaternions work, more concise, more uses

● Be Aware, Be Precise:

● who to multiply

● what order to use

● when to invert

Now go and do cool 3D stuff 

Q & A

Raise your hand
if you have any
questions now!

