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Human Brain is wired for Spatial Computation 

A childhood IQ test question 

Rotations Translations 

“I don’t need to ask 
for directions” 

a) b) c) 

Which shape  
is the same: 



Agenda 

● Rotations and Matrices (hopefully review) 

● Combining Rotations  

● Matrix and Axis Angle 

● Challenges of deep Space (of Rotations) 

● Quaternions 

● Applications 

 

 



Terminology Clarification 

Linear Angular 

Object Pose Position (point) Orientation 

A change in Pose Translation (vector) Rotation 

Rate of change  Linear Velocity Spin 

Preferred usages of various terms: 

also: Direction specifies 2 DOF, Orientation specifies all 3 angular DOF. 



Rotations Trickier than Translations 

(non-commutative) 

Rotations Translations 

a then b  ==  b then a x then y   !=   y then x 

● Programming with rotations also more challenging!  



2D Rotation  θ 

cos θ 

s
in

 θ
 

 1,0 

 1,1 

Rotate   [1 0] by θ about origin 

[ cos(θ)   sin(θ) ] 

θ 



2D Rotation  θ 

sin θ 

c
o
s
 θ

 
 -1,1  0,1 

Rotate   [0 1] by θ about origin 

[-sin(θ)  cos(θ)] 

θ 



2D Rotation       of an arbitrary point 

Rotate   about origin by θ 

= cos θ            + sin θ    



2D Rotation  of an arbitrary point 

𝑥 

𝑦 

Rotate  
𝑥
𝑦  about origin by θ 

𝑥′, 𝑦′ 
𝑥′ = 𝑥 cos θ − 𝑦 sin θ

𝑦′ = 𝑥 sin θ + 𝑦 cos θ
 



2D Rotation  Matrix 

𝑥 

𝑦 

𝑥′
𝑦′
=
cos θ − sin θ
sin θ cos θ

𝑥
𝑦  

Rotate  
𝑥
𝑦  about origin by θ 

𝑥′, 𝑦′ 
𝑥′ = 𝑥 cos θ − 𝑦 sin θ

𝑦′ = 𝑥 sin θ + 𝑦 cos θ
 

Matrix 
cos θ − sin θ
sin θ cos θ

  is rotation by θ  



2D Orientation 

𝒙 

Yellow grid placed over 
first grid but at angle of θ   

cos θ − sin θ
sin θ cos θ

 

𝒚 

Columns of the matrix are  
the directions of the axes. 

Matrix is yellow grid’s Orientation 



2D Passive Transformation 

𝒙′, 𝒚′ 

𝑥′
𝑦′
=
cos θ − sin θ
sin θ cos θ

𝑥
𝑦  

Basis: 
cos θ − sin θ
sin θ cos θ

 
𝒙, 𝒚 

𝑥′
𝑦′
,
𝑥
𝑦  both same point but 

In different reference frames 

(note: exact same math as before) 



3D Rotation around Z axis 

𝑥 

𝑥′
𝑦′

𝑧′

=
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝑥
𝑦
𝑧

 𝑥′, 𝑦′ 

𝑍 𝑎𝑥𝑖𝑠 

𝑦 



𝑧 

Can Rotate around X and Y too 

𝑥 

𝑥′
𝑦′

𝑧′

=
1 0 0
0 cos θ −sin θ
0 sin θ cos θ

𝑥
𝑦
𝑧

 

𝒙′, 𝒚′,𝒛′ 

X 𝑎𝑥𝑖𝑠 
𝑦 

𝑧 

𝑥 
𝑥′
𝑦′

𝑧′

=
cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ

𝑥
𝑦
𝑧

 𝒙′, 𝒚′,𝒛′ 𝑦 
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Rotating Objects (changing orientation) 
 

90˚ on X 90˚ on Y 

.7  0  0  .7  0  .7  0  .7  

[.5 .5 .5 .5] 0 0 0 1  

Rotations: 

Orientations: 

90˚ on Z 

0  0  .7  .7  

1 0 0
0 1 0
0 0 1

 
0 0 1
1 0 0
0 1 0

 

0 0 1
0 1 0
−1 0 0

 
−1 0 0
0 0 1
0 1 0

 

Quat   rotations: 
orientations: 

0 0 1
0 1 0
−1 0 0

 
1 0 0
0 0 −1
0 1 0

 
0 −1 0
1 0 0
0 0 1

 

Matrices used for both rotations and orientations 



Row vs Column Conventions 
OpenGL and most math books use column vectors: 

v’ = M v = B A v 

 

 

Some engines, APIs (DirectX) use row convention: 

v’ = v MT = v AT BT 

 

 

All the same. 
 

C 
O 
L 
U 
M 
N 



Combining Rotations 



Combine a sequence of Rotations  A,B,… 

Rotate v by A, then B, then C... 

 = C ( B ( Av )) 

 

Mathematically we know  

C ( B ( A v )) == ( C B A ) v  

So with matrix-matrix multiplication let: 

 R = C B A  

R is a single rotation that is the same as rotating 
by A, then by B then C. 



𝑩𝑤𝑜𝑟𝑙𝑑 𝑨𝑤𝑜𝑟𝑙𝑑 

𝑨𝑙𝑜𝑐𝑎𝑙 𝑩𝑙𝑜𝑐𝑎𝑙 

Multiplication Order: 
90˚ on  

“World” X 
90˚ on  
World Y 

90˚ on  
“Local” Z 

(dice side 3) 

90˚ on  
Local Y 

(dice side 2) 

W 
O 
R 
L 
D 

L 
O 
C 
A 
L 

World Coordinate Frame 

right side 
of page 

top of page 

Z 

Y 

X 

Dice Coordinate Frame 

Z 

Y 

X 



𝑑𝑖𝑐𝑒𝑛𝑒𝑤 = 𝑩𝑤𝑜𝑟𝑙𝑑 ∗ 𝑨𝑤𝑜𝑟𝑙𝑑 ∗ 𝑑𝑖𝑐𝑒 
𝑩𝑤𝑜𝑟𝑙𝑑 𝑨𝑤𝑜𝑟𝑙𝑑 

𝑑𝑖𝑐𝑒𝑛𝑒𝑤 = 𝑑𝑖𝑐𝑒   ∗ 𝑨𝑙𝑜𝑐𝑎𝑙 ∗ 𝑩𝑙𝑜𝑐𝑎𝑙 

𝑨𝑙𝑜𝑐𝑎𝑙 𝑩𝑙𝑜𝑐𝑎𝑙 

Multiplication Order:        Math Equations 
90˚ on  

“World” X 
90˚ on  
World Y 

Both produce: 120˚ on [1 1 1] 

90˚ on  
“Local” Z 

(dice side 3) 

90˚ on  
Local Y 

(dice side 2) 

W 
O 
R 
L 
D 

L 
O 
C 
A 
L 

= * * 

= * * 



Example When to use Local frame 

● Player “pulls up” on 
flight stick. 

● Pitch upward  about 
object wing (x) axis.  

● World x irrelevant 

● Multiply rotation (about 
x) on the   right hand 
side 

 

Sidenote:  a point doesn’t 
have an orientation, so never 
do this for points.   

Math: 

𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

=
𝑐𝑟𝑢𝑖𝑠𝑒𝑖𝑛𝑔
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

∗  
𝑝𝑖𝑡𝑐ℎ_𝑢𝑝
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

 

= * 

1 0 0
0 cosθ −sin θ
0 sin θ cos θ

 



Find Rotation R Between Orientations A and B 

need to be more specific 

 

● Have an object with orientation A, what rotation R will change it 
to have orientation B? 

𝑹 = 𝑩𝑨−𝟏 
 

● Given a direction v in reference frame A, what rotation R will 
show how v points according to B? 

𝑹 = 𝑩−𝟏𝑨 
 

Be aware of all the details of the problem to be solved. 



Rotating (Reorienting) a Rotation 

Machine that 
rotates an  
object by 𝑟𝑜𝑡 : 

Apply 45˚ 
Tilt to the 
Machine: 

𝑟𝑜𝑡 



180 𝑟𝑜𝑡 45 𝑡𝑖𝑙𝑡 

180 𝑟𝑜𝑡 45 𝑡𝑖𝑙𝑡 

Rotating a Rotation – Its Different 

Neither of these 
multiplication 

sequences work  

 



Rotating a Rotation: Decompose Steps 

Rotate duck into and back out of the machine’s reference frame: 

Tilted  
Machine: 

How to calculate  
what this new  
rotation will be? 

Same  
Result! 



Rotating a Rotation:  The Mathematics 

= * 

= * * * 

: 

: 

𝒏𝒆𝒘 𝑑𝑢𝑐𝑘′

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 =         𝑟𝑜𝑡      ∗

𝑑𝑢𝑐𝑘
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

 

𝒏𝒆𝒘 𝑑𝑢𝑐𝑘′′ =    𝑡𝑖𝑙𝑡   ∗      𝑟𝑜𝑡     ∗   𝑡𝑖𝑙𝑡−1   ∗  𝑑𝑢𝑐𝑘 

U 
P 
R 
I 
G 
H 
T 

T 
I 
L 
T 
E 
D 

Initial 
equation 

equation w tilt 



Rotating a Rotation:  The Mathematics 

= * * 

𝑟𝑜𝑡𝑡𝑖𝑙𝑡𝑒𝑑 =   𝑡𝑖𝑙𝑡    ∗  𝑟𝑜𝑡  ∗ 𝑡𝑖𝑙𝑡
−1 

Now drop the duck… 



Matrix & Axis Angle 



3D Orientation / Rotation Matrix R 

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

   

𝑹𝒚 

𝑹𝒛 

𝑹𝒙 General form of Rotation Matrix: 
• Orthonormal basis: 𝑹𝒙 𝑹𝒚 𝑹𝒛 
• 𝑹𝒛 = 𝑹𝒙 × 𝑹𝒚  etc. 
• Determinant(R)==1 
• Inverse(R) == Transpose(R) 
• Has a corresponding axis of rotation 

 

𝒙 

𝒚 

𝒛 



Rotation Matrix – Finding its Axis Angle 

𝒙 

𝒚 

𝒛 

 𝒂𝒙𝒊𝒔, 𝜽  

𝜽  

 𝒂𝒙𝒊𝒔 will be an eigenvector of R  

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

   

𝑹𝒚 

𝑹𝒛 

𝑹𝒙 

𝒙 

𝒚 

𝒛 



Example of corresponding Matrix and Axis Angle 

𝑹 =
0 0 1
1 0 0
0 1 0

 

𝑹𝒚 

𝑹𝒛 

𝑹𝒙 

𝒙 

𝒚 

𝒛 

 𝒂𝒙𝒊𝒔, 𝜽 = 𝟏 𝟏 𝟏 , 𝟏𝟐𝟎°  

𝒙 

𝒚 

𝒛 

𝜽  

To check, verify:  𝒂𝒙𝒊𝒔 == 𝑹 ∗ 𝒂𝒙𝒊𝒔 



Matrix from general axis a, angle θ  

𝒂 𝑎𝑥𝑖𝑠 

Matrix for a,θ ? 



Matrix from general axis a, angle θ  

𝒂 𝑎𝑥𝑖𝑠 

[𝑥, 𝑦, 𝑧] 

? 

How would axis/angle rotate a point [𝑥, 𝑦, 𝑧]? 



Matrix from general axis a, angle θ  
• Find b,c unit vecs  a,b,c orthonormal 

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂 
𝒂 𝑎𝑥𝑖𝑠 

[𝑥, 𝑦, 𝑧] 



Matrix from general axis a, angle θ  
• Find b,c unit vecs  a,b,c orthonormal 

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂 

• Get [xyz] as weighted sum of a,b,c  

𝒂 𝑎𝑥𝑖𝑠 

[𝑥, 𝑦, 𝑧] 



Matrix from general axis a, angle θ  
• Find b,c unit vecs  a,b,c orthonormal 

𝑥′
𝑦′

𝑧′

= 𝒂 𝒂 ∙
𝑥
𝑦
𝑧
+ 𝒃 𝒃 ∙

𝑥
𝑦
𝑧
cos θ − 𝒄 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 𝒃 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 ∙

𝑥
𝑦
𝑧
cos θ  

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂 

• Get [xyz] as weighted sum of a,b,c  
• Stuff along a stays the same, 
• Results along b & c based on sinθ and 

cosθ portions along b & c 

𝒂 𝑎𝑥𝑖𝑠 

[𝑥, 𝑦, 𝑧] 



Matrix from general axis a, angle θ  
• Find b,c unit vecs  a,b,c orthonormal 

𝑥′
𝑦′

𝑧′

= 𝒂 𝒂 ∙
𝑥
𝑦
𝑧
+ 𝒃 𝒃 ∙

𝑥
𝑦
𝑧
cos θ − 𝒄 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 𝒃 ∙

𝑥
𝑦
𝑧
sin θ + 𝒄 ∙

𝑥
𝑦
𝑧
cos θ  

𝒂 = 𝒃 × 𝒄 , 𝒄 = 𝒂 × 𝒃, 𝒃 = 𝒄 × 𝒂 

𝑥′
𝑦′

𝑧′

= 𝒂𝒂𝑇 + 𝒃𝒃𝑇 cos θ  − 𝒃𝒄𝑇 sin θ + 𝒄𝒃𝑇 sin θ + 𝒄𝒄𝑇 cos θ
𝑥
𝑦
𝑧

 

• Get [xyz] as weighted sum of a,b,c  
• Stuff along a stays the same, 
• Results along b & c based on sinθ and 

cosθ portions along b & c 

𝒂 𝑎𝑥𝑖𝑠 

[𝑥, 𝑦, 𝑧] 

“still need method 
for finding b,c” 



=

𝑏𝑥 𝑐𝑥 𝑎𝑥
𝑏𝑦 𝑐𝑦 𝑎𝑦
𝑏𝑧 𝑐𝑧 𝑎𝑧

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧
𝑎𝑥 𝑎𝑦 𝑎𝑧

𝑥
𝑦
𝑧

 

𝑥′, 𝑦′, 𝑧′ 

𝒂 𝑎𝑥𝑖𝑠 

𝒃 

𝒄 

𝑥′
𝑦′

𝑧′

= 𝒃 𝒄 𝒂
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

𝒃
𝒄
𝒂

𝑥
𝑦
𝑧

 

Alternatively (Equivalently):                   

Think of [b,c,a] as a 3x3 basis.   

● Move/rotate into abc’s 
reference frame. 

● Do spin on ‘local’ z axis 

● Rotate back out 

 

[𝑥, 𝑦, 𝑧] 

3x3 Rotation Matrix 

Matrix from general axis a, angle θ  

“ok, but this math is still not concise.” 



Challenges with the Space of Rotations 



Matrix Disadvantages 

Great for some systems (batch rendering), but not 
ideal for animation, gameplay, or physics code. 

 

● Non-compact (9 floats for only 3DOF) 

● Numerical Drift, non-orthonormal over time 

● Getting meaningful information non-trivial? 
● Extracting an axis of rotation by eigenvector 

● Interpolation between orientations (keyframes) 
 

 

𝑹 =

𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥
𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦
𝑅𝑥𝑧 𝑅𝑦𝑧 𝑅𝑧𝑧

   

Is there a better way to be working with rotations/orientations?   



Yaw-Pitch-Roll  (Euler angles)  

y,p,r = 0,0,0 45,0,0 45,0,45 

• Ordered sequence of rotations on 3 fixed main axes. 
• Ideal representation for many game systems:   

• Standing NPC (yaw==heading)  
• Camera AI,  
• Helicopter flight.   

• Convert to Matrix on the fly as necessary. 



Yaw-Pitch-Roll – not ideal for general 3D 

Could be: 
[0 90 0] or  

[45 90 -45] or  
[n 90 –n] (any n) 

[20 80 -20] [-60 80 60] 

Consider pitch 
upward to 90: 

and 

● Concatenating rotations:  Done by matrix 
multiplication.  Converting back to YPR?  

● Smooth interpolation and comparing rotations. 
What’s the angle between: 

Numerically distant, but 
Orientations similar! 



Angle Axis 
Axis Angle has Potential: 

● General 3D   

● Compact (drift averse) 

● Inversion and Interpolation easy (just modify angle) 

 

Issues: 

● Specifics of the encoding (angle as separate number or axis length?).  

● Transforming points shouldn’t be clumbsy. 

● Need a better/cleaner conversion to matrix. 

● How can we “multiply” (combine) two Axis Angle rotations???  … 



Combining Angle Axis Rotations  

[100],180°   then   [010],180°                           [0 0 1],180° 

[1 0 0],10°    then    [0 1 0],10°           ~=   [1 1 0],14 ° 

= 

Small Angles: 

Larger Angles: 

“Result axis/angle  
is almost like  

vector addition on  
the xy plane” 

“Hmmm, 
Combining 
X and Y  
somehow  
make Z” 

It’s Tricky ... 

Tilt, Turn, No Roll. 



[100],90  and  [010],90  = ... 

[010],90  and  [100],90  =  ... 

Order of rotations makes a difference... 

Combining Angle Axis Rotations  It’s Tricky 
Because… 



[100],90  and  [010],90  =  [1 1 -1],120 

[010],90  and  [100],90  =  [1 1 1],120 

Yikes.  Is there any mathematics wizardry that can deal with this? 

Combining Angle Axis Rotations  It’s Tricky 
Because  

Rotations  
are Tricky! 



Quaternions – Mathematics of Rotations 



Quaternions – Mathematics of Rotations 

● Practical and Efficient (get the job done). Provides the 
machinery your program uses for rotational operations.  

● Industry-wide standard algebraic system for dealing with 
rotations in 3D.  (existing code, popular engines).  You’ll 
need this.   

● Geometric Algebra encompass (and surpass) quaternions.  

● Still worth studying quats  (stepping stone) 

● A bit abstract  (4D and complex numbers).   Best to think 
visually/spatially. 

 



Quaternions – not too complex  
● Like complex numbers a+bi, but with 3 ⊥ sqrts of -1: i,j,k 

● ii=jj=kk=ijk=-1 ,  so  ij=k , ji=-k , jk=i, ki=j 

● Numbers of the form:  q= a+bi+cj+dk   (math text notation)  

● Isomorphic to Clifford Algebra R3+: q= a+be23+ce31+de12 

● In Practice:     q= xi+yj+zk+w   (graphics/gamedev convention) 

● Quaternion multiplication:  

𝒂𝒃 =

+𝑎𝑥𝑏𝑤 + 𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦 +𝑎𝑤 𝑏𝑖 𝒊

+ −𝑎𝑥𝑏𝑧 + 𝑎𝑦𝑏𝑤 + 𝑎𝑧𝑏𝑥 +𝑎𝑤 𝑏𝑗 𝒋

+ +𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 + 𝑎𝑧𝑏𝑤 +𝑎𝑤 𝑏𝒌 𝒌

+ −𝑎𝑥𝑏𝑥 − 𝑎𝑦𝑏𝑦 − 𝑎𝑧𝑏𝑧 +𝑎𝑤 𝑏𝑤

 

 

 Connection to Rotations may not be obvious yet… 



Quaternions as Bivector,Scalar   [v,w] 

Equivalent to write quaternion as a bivector,scalar pair: 

 

● Group the xyz elements into a 3D bivector v alongside w. 

Instead of: 𝑞𝑥, 𝑞𝑦 , 𝑞𝑧, 𝑞𝑤 , its now: 𝒒𝒗, 𝑞𝑤  

 

● Quaternion multiplication equivalent to:  
𝒂𝒃 = 𝒂𝒗, 𝑎𝑤 ∗ 𝒃𝒗, 𝑏𝑤 = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗  , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤  

 

 
Cross Product Dot Product 

some familiar operations  



Unit Quaternions and Rotations 
Use Quaternions on unit 4D hypersphere  (𝑥2+𝑦2+𝑧2+𝑤2 == 1): 

● rotation/orientation with axis a and angle θ:   

 

𝒒 = 𝒂 sin
𝜃

2
, cos
𝜃

2
 

 
● Length of bivector part proportional to sin of half of angle.   

● Value of scalar part w keeps quaternion at unit length (or cos of same half angle).  

 

May be easier to visualize just using the (3D) bivector v component.  

But its not a regular (Euclidean) 3-space. 

 



Unit Quaternions and Rotations 

Double Coverage: 

Rotation around axis a and angle θ would produce the same result 
as  rotation around axis -a and angle –θ.   

Therefore, q and –q represent the same rotation.   

 

Inverse: 

Rotation around axis -a and angle θ (or around a by - θ) would give 
the opposite rotation.  Since q is of unit length just use conjugate: 

𝒒−𝟏 = 𝒄𝒐𝒏𝒋 𝒒 = −𝑥,−𝑦, −𝑧, 𝑤 = [−𝑣,𝑤] = −𝒂 sin
𝜃

2
, cos
𝜃

2
 

 



Examples Revisited with Quaternions: 

[0 1 0 0]*[1 0 0 0]=[0 0 -1 0] 

[0 0.1 0 0.99]   *   [0.1 0 0 0.99]  ~=   [0.1  0.1  -0.01  0.99] 

= 

Small Angles: 

Larger Angles: 

approx 10° on X  
then    10° on Y  

𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗  , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤 = 0 1 0 × 1 0 0 + 0 + 0  , 0 + 0 =  0 0 − 1 0  

approx 15° 
on [1 1 -.1] 

Only Cross Product Matters here 

[1 0 0 0] [0 1 0 0] 

180 on X 180 on Y 180 on -Z 

𝒂 𝒃 = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗  , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤  Cross and dot Product near zero: 



Examples Revisited  now with Quaternions: 

.7  0  0  .7  0  .7  0  .7  

0.7  0  0  .7 ∗ 0  .7  0  .7 = [.5 .5 .5 .5] 

90˚ on X 90˚ on Y 

90˚ on X 90˚ on Y 

.7  0  0  .7  0  .7  0  .7  

120˚ on [1 1 1] 

0  .7  0  .7 ∗ .7  0  0  .7 = [0.5  0.5 − 0.5  0.5] 

120˚ on [1 1 -1] 

Numerical values added just to see that the quaternion math indeed matches expectations. 



Rotating Points/Vectors with Quaternions 

● Matrix multiplication applies to both rotating points/vectors and 
other matrices.  

● Rotate a point or vector v by treating it as a quaternion [v,0] and 
multiply by rotation and conjugate on the left and right sides 
respectively.  Or use quaternion-to-matrix conversion. 

Representation Combine 
Rotations a,b 

Rotate points or 
vectors (v) 

Matrix: Mb Ma M v 

Quaternion: qb qa q v q-1 



qvq-1 𝒒𝒗𝒒−𝟏 = 𝐚 sin
𝜃

2
, cos
𝜃

2
𝒗, 0 −𝐚 sin

𝜃

2
, cos
𝜃

2
 

=  sin
𝜃

2
𝐚 × 𝒗 + cos

𝜃

2
 𝒗,−  sin

𝜃

2
𝒂 ∙ 𝒗 −𝐚 sin

𝜃

2
 , cos
𝜃

2
 

ab = 𝒂𝒗 × 𝒃𝒗 + 𝒂𝒗𝑏𝑤 + 𝑎𝑤𝒃𝒗  , −𝒂𝒗 ∙ 𝒃𝒗 + 𝑎𝑤𝑏𝑤  

=   sin
𝜃

2
𝐚 × 𝒗 ×−𝐚  sin

𝜃

2
+ cos
𝜃

2
 𝒗 × −𝐚  sin

𝜃

2
+ cos
𝜃

2
 sin
𝜃

2
𝐚 × 𝒗 + cos

𝜃

2
cos
𝜃

2
 𝒗 + −𝐚 sin

𝜃

2
 sin
𝜃

2
−𝒂 ∙ 𝒗 , −𝒂 ∙ 𝒗  sin

𝜃

2
cos
𝜃

2
+  sin
𝜃

2
𝐚 × 𝒗 ∙ 𝐚  sin

𝜃

2
+ cos
𝜃

2
 𝒗 ∙ 𝐚  sin

𝜃

2
 

= − sin2
𝜃

2
𝐚 × 𝒗 × 𝐚 + 2 cos

𝜃

2
 sin
𝜃

2
𝐚 × 𝒗 + cos2

𝜃

2
 𝒗 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚,  0  

= cos2
𝜃

2
𝐚 × 𝒗 × 𝐚 − sin2

𝜃

2
𝐚 × 𝒗 × 𝐚 +  sin 𝜃 𝐚 × 𝒗 + cos2

𝜃

2
𝒂 ∙ 𝒗 𝐚 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚,  0  

= − sin2
𝜃

2
𝐚 × 𝒗 × 𝐚 +  sin 𝜃 𝐚 × 𝒗 + cos2

𝜃

2
 𝒗 + sin2

𝜃

2
𝒂 ∙ 𝒗 𝐚,  0  

= cos 𝜃 𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + 𝒂 ∙ 𝒗 𝐚  , 0  after simplifying 

cancel out 

cos2 + sin2 = 1 cos2
𝜃

2
− sin2
𝜃

2
= cos𝜃 

quaternion multiplication (bivector-scalar style) 



qvq-1:  Rotating Points/Vectors 𝑞 =  𝐚  sin
𝜃

2
, cos
𝜃

2
 

𝑞𝑣𝑞−1 = cos 𝜃 𝐚 × 𝒗 × 𝐚 + sin 𝜃 𝐚 × 𝒗 + 𝒂 ∙ 𝒗 𝐚  , 0  

𝒂 𝑎𝑥𝑖𝑠 

𝒗 

Quaternion 
multiplication 

qvq-1 transforms 
v by rotation q 

Three Orthogonal Vectors 
Portion along a 
stays the same 

v lies in plane of 2  
of these basis vectors: 
 𝑣 = 𝐚 × 𝒗 × 𝐚 + 𝒂 ∙ 𝒗 𝐚 

 

sum weighted  
by sin and cos 



Applications 



Quaternions can replace most Rotation Matrices 

● Cameras or any general objects with position and orientation. 

● Rigid Bodies - physics engines mostly use vec/quat pairs 

● Vertex buffers instead of tangent,bitangent,normal can use: 
struct Vertex {  

float3 position;    // location in mesh reference frame  

float4 orientation; // quaternion tangent space basis 

float2 texcoord;    // uv’s 

... 



Orientation Map 
● Extention of 

normalmap 

● rgba encodes 
orientation. 

Tangents T Normals N Orientations 

Disc with specular (𝑇 ∙ 𝐿) and diffuse (𝑁 ∙ 𝐿) 
Disclaimer:  just  
curiosity research, 

not sure how useful. 



SLERP – Spherical Linear Interpolation 

● Smooth transition between orientations 𝑞0, 𝑞1 
● Double Coverage Issue:  Use −𝑞1 instead of 𝑞1 if closer to 𝑞0 

● Normalized Lerp (nlerp) often sufficient 
𝑞𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑞0 1 − 𝑡 + 𝑞1 𝑡 ) 

● Used by animation systems (blend keyframes) 

 

 

 

Key 0 Key 1 

NLERP 0.5 

Resulting Skinned Animation 

t=0 t=0.5 t=1 



Quats – they do Addition too… 

Updating state to the next time step. 

● Position:  𝑝𝑡+𝑑𝑡 = 𝑝𝑡 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡 

● Orientation (spin 𝜔): 

 

𝑞𝑡+𝑑𝑡 = 𝑠 ∗ 𝑞𝑡 

𝑠 =
𝜔

𝜔
sin (
𝜔  𝑑𝑡

2
), cos (

𝜔  𝑑𝑡

2
)  

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔 

2
𝑞𝑡 𝑑𝑡 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝑑𝑞 

𝑑𝑡
 𝑑𝑡 

Could Build a Quat for Multiplication Or Add Derivative 

lim
( 𝜔  𝑑𝑡)→0

𝑠 →
𝜔

2
𝑑𝑡, 1  

𝑠 ∗ 𝑞𝑡 = 0001 ∗ 𝑞𝑡 +
𝜔

2
𝑑𝑡, 0 ∗ 𝑞𝑡 

𝑠 ∗ 𝑞𝑡 = 𝑞𝑡 +
𝜔

2
, 0 ∗ 𝑞𝑡 𝑑𝑡 

Proof it’s the same: 

Ok but why?... 



Quat Application: Time Integration (no drift) 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 +
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 ∗ 𝑑𝑡 

𝑘1 =
𝜔(𝑞𝑡)

2
∗ 𝑞𝑡 

𝑘2 =
𝜔(𝑞𝑡 + 𝑘1 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘1 ∗

𝑑𝑡

2
) 

𝑘3 =
𝜔(𝑞𝑡 + 𝑘2 ∗ 𝑑𝑡/2)

2
∗ (𝑞𝑡 + 𝑘2 ∗

𝑑𝑡

2
) 

𝑘4 =
𝜔(𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡)

2
∗ (𝑞𝑡 + 𝑘3 ∗ 𝑑𝑡) 

𝑞𝑡+𝑑𝑡 = 𝑞𝑡 + 𝑘1 ∗
𝑑𝑡

6
+ 𝑘2 ∗

𝑑𝑡

3
+ 𝑘3 ∗

𝑑𝑡

3
+ 𝑘4 ∗

𝑑𝑡

6
 

Forward Euler  Runge Kutta 

Spin 𝜔𝑡 is not constant!! 

Takes samples over the timestep only looks at starting spin 

more quat  
additions 



Orientation Updates  (Euler vs RK4) 

Forward Euler: 
• Spin drifts 

toward 
principle axis 

• Energy gained 
 
Runge Kutta 
• Spin orbits as 

expected 
• Energy stays 

constant 

Watch GDC 2013 Math Tutorial for full explanation of inertia tensor, time integration, angular momentum, rk4, … 



Rotation that takes one direction 𝒗𝟎 to another 𝒗𝟏 

𝒗𝟎 

𝒗𝟏 𝒗𝟎 × 𝒗𝟏 

𝒗𝟎 

𝒗𝟎 × 𝒗𝟏 

When 𝒗𝟎 and 𝒗𝟏 get close, 
𝒂 = 𝒗𝟎 × 𝒗𝟏  becomes small 
𝒅 = 𝒗𝟎 ∙  𝒗𝟏   goes to 1. 

𝒒 =
𝒂

𝒂
sin
acos (𝑑)

2
, cos
acos (𝑑)

2
 

𝒒 =
𝒂

2(1 + 𝑑)
,
2(1 + 𝑑)

2
 

Cross product to find axis 𝒂 
Less stable  
when d ~ 1 

What if 
𝒂  was 0 

𝒒 = 𝒗𝟎 × 𝒗𝒎𝒊𝒅, 𝒗𝟎 ∙  𝒗𝒎𝒊𝒅  

Let: 𝒗𝒎𝒊𝒅 =
𝒗𝟎+𝒗𝟏

𝒗𝟎+𝒗𝟏
 

using 
half  
angle 
formulas 

GA style –  
geometric 
product  
produces 
rotation 
versor 

Ignore 𝒗𝟎 = −𝒗𝟏 case for now 



Diagonalization of Symmetric Matrices 

For symmetric matrix S find D,R: 
𝑫 = 𝑹 𝑺 𝑹−1 

● Iterative approach [Jacobi 1800s]. 

● Algorithm can accumulate directly into 
Matrix or a Quaternion (3D). 

 

Eigenvalues are entries of diagonal part. 

If not all equal, this may be interpreted as an 
orientation for the matrix in some contexts. 

 

𝑎 𝑓 𝑒
𝑓 𝑏 𝑑
𝑒 𝑑 𝑐

  

𝑥 𝑦 𝑧 𝑤 ,
𝑎′ 0 0
0 𝑏′ 0
0 0 𝑐′

  

Rotate Off 
Largest  

diagonal? 

No 

Yes 

“Orientations may show up  
in new interesting places” 



Orientation of a Point Cloud 
● Compute covariance 

● Diagonalize to get orientation.   

● Permute by eigenvalues for 
long,med,short axes. 

 

x 

y Principle Axes 

𝒄𝒐𝒗 = 𝒗𝒗𝑻 = 

𝑣𝑥
2 𝑣𝑥𝑣𝑦 𝑣𝑥𝑣𝑧

𝑣𝑦𝑣𝑥 𝑣𝑦
2 𝑣𝑦𝑣𝑧

𝑣𝑧𝑣𝑥 𝑣𝑧𝑣𝑦 𝑣𝑧
2

 

UI: Data from  
Depth Sensor 

AI: Optimal 
bombing run.  



Visualize Inertia Properties 
To debug physics behavior of rigid body: 

● Diagonalize Inertia Tensor (symmetric matrix) 

● Draw box over object with resulting orientation 

● Eigenvalues are box dimensions 

Irregular Shape Inertia Overlay 



Dual Quaternions 
● Add a 0 or 𝜀, 𝜀2 =0 

● 𝑞 = 𝑥𝒊, 𝑦𝒋 , 𝑧𝒌, 𝑤 , 𝑥′𝒊𝜺, 𝑦′𝒋𝜺, 𝑧′𝒌𝜺, 𝑤′𝜺  

● Put half translation t in dual part 
𝒕′′ = 0,0,0,1,  𝑡𝑥/2, 𝑡𝑦/2, 𝑡𝑧/2,0  

● Extend rotation r to dual quat 
𝒓′′ = 𝒓, 0,0,0,0  

● Multiply trans and rot dual quaternions 
𝒒′′ = 𝒕′′𝒓′′ 

Rotation and Trans in a single 8D number 𝒒′′ 

 

 

To be continued (in Gino’s IK session) ... Dual Quat 

S 
K 
I 
N 
N 
I 
N 
G 

Matrix 

Dual Quat Screw Motion 

 
S 
L 
E 
R 
P 
 

distant 
axis 



Working with Rotations - Conclusion  

● Rotations can be tricky (don’t blame math) 

● Matrices work 

● Quaternions work, more concise, more uses 

● Be Aware, Be Precise: 

● who to multiply 

● what order to use 

● when to invert 

Now go and do cool 3D stuff  



Q & A 

Raise your hand  
if you have any 
questions now! 


