
Good afternoon! My name is Dirk and I am a software engineer at Valve. 
This year I am going to talk about convex hull creation for collision detection. 
 
Ask audience: 
- Who attended my talk last year? 
- Who is using SAT now? 
 
- If not, who tried it? What were the problems? 
- If you are interested, please step forward after the tutorial and we can discuss some 
of those issues! 
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Before we start I like to quickly outline the talk. 
- After a short introduction I will first start with Quickhull in 2D 
- Then we continue with geometrical invariants which we need to maintain while 

constructing the hull to avoid numerical problems 
- After the 2D introduction we will directly dive into the 3D version of Quickhull 
- We then investigate geometrical and topological invariants while constructing the 

hull in 3D and close with some implementation details 
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Before we start let’s figure out what a convex hull is and look at an example: 
- We call a shape convex, if for any two points that are *inside* the shape, the line 

between these two points is also inside the shape 
- A concave shape does NOT satisfy this requirement as you can see in the figure on 

the right hand side 
- If you look at concave case you see that it is easy to find two points inside the 

shape where the line has to leave and then enter the shape again. 
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What is a convex hull? 
 
Give a set of N input points we can now define what we are going to call a convex 
hull: 
- Formally:  A convex hull is the smallest convex set containing all input points 
- Informally: If your points would by nails sticking in some piece of wood, the convex 

hull would be a rubber band wrapped around the outside nails.  
 

-> This means in 2D the hull is a convex polygon defined by vertices and edges! 
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I also like to show a 3D convex hull of a well known object – Utah Teapot.  
- It is incredible how versatile this model is! 
- In 2D we used the rubber band analogy to get some intuition for a convex hull 
- In 3D you can think of shrink wrapping the object 

 
-> This means in 3D the hull is a convex polyhedron defined by vertices, edges and 
*polygonal* faces! Note that we are not going to restrict ourselves to triangles 
faces only! 

5 



Why should we use convex hulls for collision detection in games? 
 
- Dynamic game objects are usually approximated by simpler shapes for collision 

detection since using the render geometry would NOT be efficient  
- Convex hulls are a good candidate since they can approximate even complex 

geometry quite well 
- Also, collision detection for convex polyhedra is well defined and robust. Think of 

GJK and SAT which we discussed already here in earlier tutorials 
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Before we start I like to show two videos to give you some idea how convex hulls are 
used in games. 
- Show a movie of convex hulls in the game  
- Show how the physics engine sees the game 

 
Sergiy will show you how to implement awesome physics visualization right after this 
talk! 
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I hope the videos gave you an idea about the problem we are trying to solve here 
today.  
 
When I started looking in convex hulls I quickly came across an algorithm called 
Quickhull: 
- Quickhull was published by Barber and Dobkin in 1995 
- It is an iterative algorithm that adds individual points one after the other to 

intermediate hulls.  
- When implementing an algorithm like Quickhull using floating point arithmetic you 

cannot assume that your computations will be exact which becomes a problem 
when your input set is ill-defined (e.g. nearly identical points) 

- Quickhull uses fat faces to deal with numerical issues and the output is a set of 
‘fat’ faces that contain all possible exact convex hulls for the input set 

- In the remainder of the talk will try to explain what this means in detail! 
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In this presentation I like to share what I learned about convex hulls in general and 
about Quickhull in particular: 
- I will start outlining the algorithm in 2D first 
- I like to mention, that this is not the ‘real’ 2D Quickhull algorithm (which actually 

exists). You should think of it as an introduction of the 3D version we will 
investigate later in the talk 

- Personally I find it often helpful to think about things in 2D first, to get a good 
understanding of the problem and to familiarize myself with the basic ideas 
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Assume we are a given set of points and we asked to build the convex hull using the 
Quickhull algorithm: 
-  The first thing we need to do in Quickhull is to build an initial hull from where we 
can start adding points iteratively 
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To find this initial hull we start by identifying the extreme points along each cardinal 
axis 
- This simply means we find the points with the smallest and largest x and y values.  
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From these four points we choose the pair which is furthest apart 
- In this example this would be the left and right-most points 
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- Finally we search for the furthest point from the line through these two extreme 
points 
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These three points build our initial hull  
- In 2D the initial hull is simply a triangle 
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Before we start adding new points to the initial hull we have to do some bookkeeping 
work: 
- The next step is to partition the remaining points and assign each point to its 

closest face 
- We can also remove internal points since those cannot be on the final hull   
 
What that means is that each face maintains a list of points which are outside the 
face plane. We call those ‘conflict lists’ since the points can “see” the face and 
therefore are potentially on the final hull. This is a clever way of managing the 
vertices since we don’t need to iterate all vertices when adding a new vertex to the 
hull. This makes Quickhull typically O(n log n) in both 2 and 3 dimensions! 
 
NOTE: 
Please don’t get confused here. Since I am presenting in 2D and 3D and some 
terminology overlaps I will use the terms ‘Edge’ and ‘Face’ interchangeable! This 
will usually help when we go to 3D later in the talk! 
 

15 



The next step is to add a new point to our intermediate hull. We iterate our conflict 
lists and find the point p with the largest distance from the hull:   
- Let’s call this point the eye point 
- Adding this new point requires several sub steps 
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First we need to identify all faces that are visible from the newly added point since 
these faces cannot be on the hull: 
- A face is visible if the new point is in front of the face plane.  
- We can use simple plane tests to classify the new point against each face! 
- The next step is then two find the two vertices that connect a visible with a non-

visible face.  
- We call these two vertices the horizon 

 

17 



- Once we identified the two horizon vertices we then create two new faces for 
each horizon vertex to connect the new vertex to hull 
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After building  the new faces some old faces became obsolete  
- Before we can delete these faces we need to handle their conflict lists since these 

conflict points can still be on the final hull 
- We handle this by simply partitioning these orphaned vertices to the new faces 
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Finally we can now remove all old faces which were visible from the new point and 
therefore cannot be on the hull anymore 
- This closes the iteration and we repeat those step until all conflict list are empty 
- In our example here we continue and grab the next eye point and add it to hull as 

we just learned 
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And we do it one more time to find our final hull… 
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When there are no more vertices (which means all conflict lists are empty) we are 
done! 
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- As you can see the basic ideas should be pretty easy to understand 
- In 3D the major implementation difficulties actually arise from managing the lists of 
vertices, edges, faces and conflicts 
- The other difficulty is dealing with numerical imprecision when classifying points 
using plane tests.  
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So far we pretended that our mathematical operations are exact.  
- Of course this is not true in  floating point arithmetic.  
- Let’s investigate how we can deal with those problems. 
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When building a convex hull we must maintain geometric invariants while 
constructing the hull: 
- In 2D we must guarantee that every vertex is convex 
- This should be obvious since otherwise it would be simple to find a line between 

two points inside the hull that would leave and enter as shown in the slide at the 
beginning of the talk 

- I tried to hint this with the dotted line between the normals in the slide 
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Next we need to define what a convex vertex is and how we can test this vertex for 
convexity: 
 
For each vertex: 
- First test if right vertex is below the left face 
- Then test if left vertex if it is below the right face 
- If both tests are true the vertex is convex, otherwise it must be concave or 

coplanar 
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Let’s now look at an example where non-convex vertices might become an issue: 
- Whenever we add a point which is collinear with an existing face things can 

become fuzzy 
-  A small variation of point P will define whether the vertex V will remain on the hull 
or not 
- Ideally we would like to have more stability such that for very small  variations 

within some tolerance we would get the same result 
- Note that the point P is not actually moving, but can end up on either side of the 

plane *just* due  to numerical imprecision  
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A common approach to deal with these kinds of numerical problems is to use so 
called *fat* planes 
- Instead of comparing directly against zero we now compare against some epsilon 

value  
 
We still can classify points when using fat planes as before: 
- A point is in front of the plane if its distance is larger than epsilon  
- A point is behind the plane if the distance is less than negative epsilon 
- Otherwise the point must on the plane. 
 
We can now define a vertex to be convex if its distance is larger then epsilon. All 
other points are either concave or coplanar and should be handled specially! 
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Let’s have a quick look how the fat planes affect our definition of convex, coplanar 
and concave vertices. 
 
For each vertex: 
- Find the distance of the right vertex to the left face 
- Find the distance of the left vertex to the right face 
- If both distances are larger epsilon the vertex is convex, otherwise it must be 

concave or coplanar 
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So what do we do when we encounter a non-convex vertex? 
- In order to deal with non-convex vertices we can simply merge the left and right 

face across the vertex into a new face.  
- This will correct the geometrical defect. 
- In 2D we only need to inspect the two new horizon vertices at each iteration and 

correct those if necessary! 
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The final question is what epsilon we should choose for our fat planes: 
- The CRT defines a static floating point epsilon but this does NOT take our input set 

into account. 
- We like to define a relative tolerance which takes the size of the input into account   
- Note that it will not be sufficient to just use the extent of the AABB  since our input 

vertices might be just way off the origin 
- So one possible solution it to choose an epsilon relative to the sum of maximum 

absolute coordinates of the input set 
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This closes the introduction of Quickhull in 2D. I hope you now have some first idea 
how the algorithm operates.  
- In 2D there already exist good algorithms to build convex hulls which are easy and 

straight forward to implement.  
- So if your game is 2D I recommend using one of those. 

 
In the remainder of the talk we will discuss how we build convex hulls in 3D 
-   Quickhull in 3D is very similar to the version I just showed you in 2D 
- The most notable difference is the construction of the horizon and we have to deal 

with numerical imprecision more carefully 
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As in 2D we need to build an initial hull 
- We first find the initial triangle (v1, v2, v3) as we did in 2D before 
- Then we also add the furthest point from the triangle plane (here v4) 
- In 3D the initial hull is now a tetrahedron 
- After we build the initial hull we partition the remaining points as before into the 

conflict lists  
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We then start iteratively adding new points to the hull and grab the point with the 
largest distance from our conflict lists: 
- This gives us the next eye point 
- As in 2D we need to find the horizon again 
- In 3D the horizon is a list of edges that connect visible with non-visible faces.  
- You can think of it as the boundary between the visible 
- Finding the horizon is a bit more involved in 3D and we will look at it in more detail 

in just a second 
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We then proceed with the iteration and create a new face for each horizon edge with 
the new eye-point  
- This essentially connects the new vertex to the current hull 
- Finally we partition the orphaned vertices to the new faces (F1 – F3) 

35 



Finding the horizon in 3D is not as easy as finding two vertices as it was in 2D. 
 
- For finding the horizon we essentially perform a flood fill starting from the conflict 

face S  
- At each step we cross one edge and visit a neighboring face 
- If the face is visible, we cross another edge until we find a face that is not visible 

from the current eye point  
- We store the offending edge as part of the horizon and continue the search in the 

previous face 
- On termination we have a list of all edges defining the horizon in a closed CCW 

loop 
- On the slide we start at the face labeled with S and follow the arrows 
- Since this is an essential operation of the hull construction let’s look at this in more 

detail 
 

Explain arrows in slide! 
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I prepared a small animation which hopefully will help to understand the horizon 
construction: 
- I will just run it first so you get the idea and sometime a good picture says more 

than 1000 words 
- We will then rewind and I will point out some important points 

 
We start at the conflict face and cross the first edge 
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-  We test the visibility of the next face (and we assume here it is visible from the eye 
point) 
- Since it is visible we continue our search and cross the next edge 
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- We test the next face and since it is visible so continue and cross the next edge 
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- We continue these tests until we cross an edge to an invisible face 
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We would now cross an edge to a face we have already visited  
- Whenever we visit a face we will mark them as processed  
- This allows to simply test if a face was already processed and can be skipped 
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… 
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Again we already visited this face so we don’t cross this edge as well 
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The next face was already visited so no need to cross here as well 
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Finally we would cross the first edge that connects a visible and an invisible face 
- We add the edge to the horizon list and return to the previous face 
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We continue with the next edge.  
- Since this is the edge we crossed over to the current face we return to the 

predecessor of the current face 
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Again we cross an edge that connects a visible and invisible face 
- We save that edge and add it to our horizon and return to the previous face 
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The procedure continues and collects the horizon edges until we made our way back 
to the start face 
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This is edge we started with and we are done! 
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On termination we have a list of all horizon edges in CCW order 
- We now simply create a new triangle face for each horizon edge in our list 
- This essentially connects the new vertex to the current hull 
 
If you wonder why this works here is a quick answer: 
- Every convex polyhedron can be represented by a planar graph and the horizon is 

essentially constructed performing a DFS on this graph.  
- I don’t want to go into graph theory here, but you might want to keep this in mind 

when you try to implement this function! 
 

Let’s now rewind and have see how this works again! 
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This closes the introduction of the 3D Quickhull algorithm 
- As in 2D the next topic will be geometric and topological invariants we need to 
consider when constructing the hull 
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As in 2D we must maintain geometric invariants while building the hull: 
-   In 3D we must now guarantee that every edge is convex 
- Again this should be obvious as well since otherwise it would be simple to find a 

line between two points inside the hull that would leave and enter as shown in the 
slide at the beginning of the talk 
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We need to define what a convex edge is and how we can test an edge for convexity: 
 
For each edge: 
- First we test if the center of the right face is below the left face plane 
- The we test if the center of the left face is below the right face plane 
- If both tests are true the edge is convex, otherwise it must be concave or coplanar 
- This is very similar to the 2D test, but we now use the center point of the face 
- The face center is simply the average of the face vertices 
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As in 2D we need an epsilon to define the flat planes and we just expand our formula 
to 3D! 
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So in 3D we now merge faces across non-convex edges. This add another step to our 
iterative loop: 
- Let’s assume face1 and face2 were coplanar in our previous example 
- We would now merge face1 and face2 into a new polygonal face replacing the 

original faces F1 and F2 
- As mentioned in the beginning we are not restricting ourselves to triangle faces 
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Let’s now investigate the example from the original Quickhull paper: 
- This is an example what happens if you DON’T merge faces and how you run into a 

bunch of geometrical and topological problems 
 
Situation here:  We have a new point 𝐏. The faces 𝐹1 and 𝐹3 are visible from the new 
point 𝐏 while face 𝐹2 is not! 
- Think of a tetrahedron and the front face is in the screen plane 
- The front face was not merged into one big triangle face, but it is essentially a fan 

of three faces which are coplanar sharing non-convex edges 
- Let’s look at this example from the bottom and exaggerate the situation a bit 
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Assume we are below point P and look UP: 
-  You can see the new point and the bottom edges of the three faces 
- Since we didn’t merge faces we might have potentially introduced non-convex 

edges 
- You hopefully can see now how we could potentially end up in the situation 

described in the previous slide 
- Of course the figure is highly exaggerated and doesn’t need to be this extreme to 

go bad 
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We now build the horizon as we learned earlier to find the horizon edges 
- The results in five horizon edges a, b, c, d, and e 
- Note how the horizon now pinches into the current hull at face1 and face3 
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We replace 𝐹1 and 𝐹3 with 5 new faces for each edge a−e 
- Let’s look at each of the new faces individually and see what happens! 
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We build a face for edge a 
- Note how this face partially overlaps face2 which is still on the hull 

84 



We build a face for edge b 
- Note that this face has flipped (CW) orientation and also shares and edge with FA 
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We build a face for edge c 
-  Nothing wrong here 

86 



We build a face for edge d 
- Note that this face has flipped (CW) orientation again and also shares an edge with 

FA and FB 
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We build a face for edge e 
-  We now have four edges sharing the same edge and also partially overlap each 
other 
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- Due to numerical imprecision F2 is still identified as visible from P as well 
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As you probably noticed we introduced a couple of errors because our hull was not in 
an healthy state when we started adding the new point.  
 
As a result the new faces are violating a bunch geometrical and topological invariants: 
- Two faces are flipped upside down (that means the normals are pointing inside) 
- Four faces share the same edge (which yields them partially and fully overlapping 

each other) 
 

As you can imagine repairing those errors would become pretty involved.  
The good news are that I haven’t run into any of the described issues when properly 
merging faces during the hull construction.  
So hopefully you can see that it essential to our implementation to maintain a healthy 
hull during construction. 
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We haven’t talked about a data structure for convex polyhedra yet. So before we start 
looking into face merging in more detail, let’s talk about a possible data structure 
first: 
 
- Obviously there are many ways to describe a convex polyhedron  
- A common data structure is the so called Half-Edge data structure which is an edge 

centric mesh representation 
- The half edge data structure makes it easy to iterate edges of a face and to access 

neighboring faces  
 
For each face we store: 
- A half-edge that defines the entry into a circular list around the face 
 
For each edge we store: 
- The previous and next edge that build the circular face list around the face 
- A twin edge to cross over to adjacent faces 
- The tail vertex of the edge  
- Note that we don’t need to store the head vertex since it is simple the tail vertex 

of the twin edge 
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We learned that face merging is the essential operation to maintain a healthy hull.  
- Here is an example how to merge two faces using the half-edge data structure.  
- The situation is that we are about to merge the left into the right face: 
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First we make sure that the absorbing right face does not reference the edge we are 
about to delete (e.g. we use edge->prev here) 
-  Avoiding those kinds of dangling pointers is actually what makes the 
implementation kind of interesting 
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Next we must make sure that all edges of the absorbed left face new reference the 
absorbing right face 
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Finally we need to connect the incoming and outgoing edges at the deleted edge 
vertices 
- I give you some time to have a closer look at this slide since it has a bunch of 

information 
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After successfully merging two faces we can clean-up some things: 
 
- We can remove the merged face from the global face list 
- We then destroy merged edges 
- Finally we can destroy the merged face 
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Face merging will create polygonal faces and we need to compute a face plane: 
- The Newell method is common technique to build the plane for a coplanar polygon 
-  It builds a best fit plane in the least square sense 
-  Sadly the computed normal might sometimes have only a few digits of precision 
-  We can improve precision by moving any vertex of the polygon into the origin  

 
Hint: 
-  See E. Catto’s excellent blog post “A troublesome triangle” about this problem! 
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I added some formulas for completeness and convenience, but going into detail here 
would get us off topic. 
 
Gino’s and Christer’s book both cover Newell planes and you will also find good 
information using Google! 
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Now let’s look at one important topological invariant of a convex hull. 
- Each vertex must have at least three adjacent faces 
- Or three leaving edges if you prefer this view 
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When merging faces we might violate topological invariants and need to fix those 
again: 
 
Consider the merge sequence in the above picture and how it can lead to topological 
errors: 
- We merge face3 into face1 

 
This creates a couple of problems: 
- Vertex v has now only two adjacent faces 
- The incoming and outgoing edges of v share the same face (F2) and are not distinct 
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We detect this error by checking the adjacent faces of the in- and outgoing edges -> 
Both edges point to face2 
- Since face2 is a triangle we don’t need to connect the in- and outgoing edge, but 

use the non-shared edge instead 
-  Face2 is also redundant since all vertices are contained in face13 and can be 
deleted 
- Vertex v has also become obsolete and should be deleted as well 

 
When we merge faces we check for this error and fix it immediately! 
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Let’s look at the previous example again. 
 
Consider now the slightly different merge sequence and how it leads to the same 
topological errors, but requires a slightly different fixing strategy: 
-   We now merge face2 into face1 
 
Again: 
- Vertex v has only two adjacent faces 
- The incoming and outgoing edges of v share the same face (F3) and are not distinct 
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We detect this error again by checking the adjacent faces of the in- and outgoing 
edges -> Both edges point to face3 here 
- Since face3 has more than three vertices we cannot apply the same fixing strategy 

as before 
- Instead we extend the incoming edge to the next vertex and delete the outgoing 

edge 
- Again vertex v has become obsolete and should be deleted as well 

 
When we merge faces we check for this error and fix it immediately! 
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Imagine we are building the convex of hull of a cylinder and we are about to add the 
final vertex of the top face. 
- This vertex is of course in the same plane as the other vertices. 
- In this situation we create many new faces which are coplanar and need to be 

merged 
- Ideally we would like to merge all new faces into one face as shown on the right 

hand side 
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The problem is now that we merge one face after the other 
- And whenever we merge two faces we rebuild the face plane. 
- Rebuilding the face can jiggle the plane and an edge between two faces can 

become temporarily convex preventing us from merging the whole cycle 
- It becomes e 
- In the worst case this can introduce redundant or degenerate faces which are now 

NOT merged properly 
 

Here are some ideas how to address this: 
- The faces with the largest area should be the most stable w.r.t. the orientation of 

the face plane. So merging into the largest faces first reduces jiggle. 
- You can also introduce an absolute tolerance to increase your merge radius and 

make your merge cycle be less sensitive for these situations.  
- This is basically how I handle this problem at the moment since for physics we 

want as many large faces as possible for stability reasons and do not aim for the 
tightest hull. 

- If you are working with collision margins it is probably a good idea to make the 
absolute tolerance a small percentage of that margin 
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Another idea to deal with this problem is to NOT rebuild the face planes at all when 
merging to faces: 
- For both faces you have your best fit plane and the vertices (which I tried to sketch 

on the slide) 
- You can now compute the absolute distance of the right face’s vertices to the left 

face’s plane and vice versa 
- Then simply keep the face plane that minimizes the distance instead of rebuilding 

it 
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Let’s now talk how we could use face merging to deal with defect hulls: 
 
-  At each iteration we assume to start with a healthy hull 
-  When adding the vertex we need to inspect all new faces for possible defects at 
their edges between each other and at the horizon 
-  An easy strategy is to simply iterate all new faces and inspect their edges and repair 
defects one by one until we repaired all possible defects 
 

107 



This closes the theory and in the remainder of this talk I like to share some tips about 
a possible implementation  
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The major performance pitfall is bad memory management of the half-edge data 
structure: 
-  The convex hull for N vertices is bounded 
-  Worst case is that all input vertices are on the hull: 
- The number of vertices is then at most V = N 
- The number of edges is then at most E = 3N – 6 
- The number of faces is then at most F = 2N – 4 
- Test with Euler’s formula: V – E + F = 2 
 
We can pre-allocate one buffer for vertices, half-edges, and faces and manage this 
buffer in a free list 
- Ideally we will just have one big allocation per hull construction! 
- This becomes especially important if you plan to compute convex hulls at runtime 

(e.g. for destruction) 
 
Some practical details: 
- Don’t forget that you need to allocate half-edges (twice the number of edges) 
- Also account for temporary allocations (e.g. horizon faces) 
- In practice just double the buffer size 
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Let’s start with the vertex structure.  
- I am using an intrusive list to store the vertices in the global vertex list of the hull 

or in a conflict list 
- So obviously we have to include the list pointers here. 
- You can optionally also store an edge leaving the vertex.  
- This is not needed for constructing the hull, but it can be useful for post-processing 

if you like e.g. to iterate all adjacent faces of the vertex 
- Of course we also to need store the position of a vertex  
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Now let’s have a quick look how we can potentially implement a half-edge.  
- As one would expect this definition maps pretty directly to a possible data 

structure 
- We store a pointer to the tail vertex of the edge 
- The edges build a circular list around the face so we also need to store the list 

pointers 
- We also store the twin edge to cross over to adjacent faces 
- Finally we also keep a reference to the parent faces of the edge 
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Finally the face structure.  
- I am also using an intrusive list here, so we have to include the list pointers again 
- And of course there is a pointer to the first edge starting the circular list around 

the face 
- And of course we can store our conflict list here as well 
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Finally some high-level code examples to give you an idea of a possible 
implementation: 
- Assume we have some qhConvex class to store the hull after construction 
- This snippet shows the top level construction function 

 
Explain a bit… 

113 



The code snippets shows the iterative AddVertex() function 
- We add new points until our conflict lists are empty 

 
Explain a bit… 

114 



So you want to implement Qhull yourself and I talked now for nearly an hour and 
there is no code! 
- Luckily there is a beautiful open-source implementation in JAVA which you can use 

to start 
- I also recommend looking at the original Qhull implementation which is also a 

great implementation and full of gems of computational geometry!!! 
 

Hopefully my presentation will help you to understand and implement a robust 
convex hull builder! 
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Before I close I like to thank a bunch of people! 
- Thanks to Valve for giving me permission to present to you today 
- Thanks to Paul, Steve, Jeff and Anoush for spending time and rehearse this 

presentation with me 
- Thanks to Randy for reading the presentation several times at an early stage and 

providing valuable feedback 
- Special thanks to Erin for endless discussions about Quickhull 
- Special thanks to J. Lloyd for sharing his beautiful JAVA Quickhull implementation  
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I prepared a little demo which I like to show first and then I will answer questions!  
Thank you! 
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