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Erwin	  Coumans
Exploring MLCP solvers and Featherstone

http://goo.gl/84N71q

Iterative constraint solvers work great, but there are cases where we could use better convergence. This presentation explores various Mixed Linear 
Complementarity Problem (MLCP) solvers and the Featherstone articulated body algorithm and how to mix them. !
The intention is to augment/extend the popular iterative constraint solver we all use and love, sequential impulse or variants of projected gauss seidel. In other 
words, we can use a better solution for part of the problem that needs it, but use our existing solver for the parts that we are happy with.
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Thanks to Sony and AMD, I was able to work on the Bullet Physics SDK, 100% of my time, for over 10 years now. Most of the time I spend on a pure GPU rigid 
body dynamics engine, written entirely in OpenCL. Aside from that, I have been looking into improved constraint solvers and Featherstone, and that’s what 
today’s talk is about. !
Before that, I would like to briefly show you a video of the OpenCL work. It is also explained in a new book, Multithreading in Visual Effects, which will be 
released around July this year.



Challenges	  for	  Sequential	  Impulse

Last year at the GDC 2013 Physics Tutorial, Havok physics simulation architect Oliver Strunk discussed some of the issues with iterative constraint solvers in 
his ‘Stop my Constraints from Blowing Up!’ talk https://code.google.com/p/box2d/downloads/list !
It is common for game physics developers to use a very low amount of iterations for an iterative constraint solver. When only using 4 to 10 solver iterations, the 
projected Gauss Seidel numerical method often fails to converge to a proper solution. !
Oliver suggested avoiding large mass ratios, decreasing the time step and/or increase the inertia tensor. !
There is plenty of evidence that game physics programmers are very creative dealing with large mass ratios. 
“I feel ashamed for admitting this, but we sidestepped the whole problem of mass ratios in Halo 2. Havok allows you to mess with the collision response 
directly, so we simply pin the relative masses of objects so that there is never more than a 16:1 ratio between them.” 
http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=54 !
Clamping the mass ratios can certainly help avoiding a lot of issues, but can we do better without cheating with the masses? Let’s first have a closer look at 
some of the problems. !
Show a few demos that demonstrate some issues with iterative constraint solvers, such as sequential impulse (SI)/projected Gauss Seidel (PGS) numerical 
method. !
1) Stack heavy objects on light objects 
2) Door hinge hitting heavy object 
3) Ragdoll joint gap 
4) Forklift joint gap 
5) Heavy tank on tracks 



How	  to	  improve	  Sequential	  Impulse

● Overview	  of	  Rigid	  Body	  Simulation	  Loop	  
!

● Add	  improved	  MLCP	  block	  solvers	  
○ Moving	  from	  SI	  to	  generic	  PGS	  MLCP	  solver	  
○ Try	  out	  NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers	  
!

● Add	  O(n)	  solver	  for	  tree/chain	  equality	  joints	  
○ Featherstone	  Articulated	  Body	  Algorithm	  
○ Mixing	  ABA	  with	  Sequential	  Impulse

In this talk I want to share my experiences during my exploration into MLCP solvers and Featherstone articulated body method. This work is part of the Bullet 
Physics SDK and it started last year and it is on-going. I was using an iterative constraint solver, similar to Sequential Impulse, as Erin Catto described. !
Although Sequential Impulse is an MLCP solver, its implementation and interface with the rest of the physics engine was not generic enough to allow easy plug 
and play of other MLCP solvers. For example we don’t build an actual ‘A’ matrix. So I want to discuss how to move from a Sequential Impulse solver to a more 
generic format MLCP solver. A generic form MLCP of Sequential Impulse is basically projected Gauss Seidel. !
Once we have an interface that can interface with generic MLCP solvers, we will have a look at some solvers, such as Non-linear Non-smooth Conjugent 
Gradient, Dantzig and Lemke. !
For a chain or tree of equality constraints the Featherstone Articulated Body Algorithm is very suitable, and O(n). We will look at the basic parts of this 
algorithm, and how to integrate it with an existing constraint solver, such as Sequential Impulse. !
In my first draft of this presentation, I realized that it would be useful to give an overview of some important parts of the rigid body simulation loop. This will 
make it easier to put things into context. So first, let’s have a look at the overview.



Maximal	  versus	  Reduced	  Coordinates

Revolute joint 
adding 1 DOF 
(mobilizer)

Prismatic joint 
adding 1 DOF 
(mobilizer)

Hinge constraint 
removing 5DOF

Slider constraint 
removing 5DOF

Single 6DOF Rigid Body 
and pair-wise constraints

Multibody with child links 
and mobilizers

It is important to know the difference between maximal coordinates single rigid bodies attached by constraints and a reduced coordinate multibody. Single rigid 
bodies are represented with 6 degree of freedom and constraints are used to control those degrees of freedom. One of the issues of using maximal 
coordinates is that if the constraints are not fully satisfied, there can be a visible gap. !
Reduced coordinate, or generalized coordinates methods only express the degrees of freedom. For example a hinge is expressed as a 1-DOF revolute joint 
angle. We can call such multibody joint a mobilizer to distinguish it from a joint constraint. Using such representation means that there can be no gap.



Rigid	  Body	  Simulation	  Loop

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Rigid Body State 
Degrees of freedom (DOFs) 
 Position, Orientation 
Linear and Angular velocity,  
Mass, Inertia

Joint State

External Forces 
(Gravity, PD control, springs)

MLCP Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update 
(World space tensor)

Compute Contacts

Joints

Before going into detail, let’s have a look at a simplified rigid body simulator loop. To keep it simple, we assume discrete simulation using a fixed small time 
step in the range of 30 to 1000 Hertz. So in the case of 60 Hertz, this loop is performed 60 times per second. !
The state of the system includes the rigid body state variables. This includes the 6 degrees of freedom for translation (position) and rotation (orientation). In 
addition, bodies can be connected by joints. Those joints can be represented as constraints, or as mobilers of a multibody. !
Furthermore there can be external forces such as gravity or user-defined forces. For example the user could simulate a spring or a controller by applying 
external forces. Let’s have a closer look at the steps in this simulation loop, and what choices we made that affect simulation quality and stability.



Contact	  and	  Collision	  detection

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Collision 
detection 
and contact 
computation

!
Starting at the top, we perform collision detection and compute contact between rigid bodies. As we are concerned about discrete simulation, we are using 
discrete collision detection. It is common to compute one or more contact points between touching objects. A contact point has a distance, which is positive if 
the objects are separate and negative if there is penetration. A contact point also has a contact normal and two closest (witness) points, one on each object. !
When dealing with a collision that involves one or more multibody, we need to determine the ‘child’ body, or link that is involved. Also, we might want to control 
if a multibody has self-collision, and if jointed links/bodies are allowed to collide. Self-collision might introduce some issue, as we briefly discuss later. 



Inertia	  update

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Compute world 
space inertia 
tensor

To update a rigid body and multibody, we will need to have access to its mass and inertia, in world space or joint space. Usually we pre-compute the local 
space inertia tensor for a rigid body by applying the body world transform. As we will see, there is a little bit more work involved for multibodies to compute the 
articulated inertia tensor.



Velocity-‐dependent	  forces

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Computation of velocity-
dependent forces

There are velocity-dependent forces, such as Coriolis forces. Those forces are necessary to maintain angular momentum. Think of a rotating skater on ice that 
rotates faster if he moves his limbs closer to the rotation axis. This is a quadratic term and this can cause a feedback loop that adds a lot of energy, causing 
instability. When using single rigid bodies, this term is often left out. 
It is also possible to include the term using explicit integration, and adding some safety mechanism (hack) that adds artificial damping and clamp the maximum 
velocities. !
It is also possible to use implicit integration, which adds damping as well. We will briefly show some way to derive the function for implicit integration.



Joints	  as	  Constraints	  or	  as	  Mobilizers

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Joints simulated as 
constraints or as 
mobilizers in a 
multibody  
      in O(n) time

It is common to simulate joints, such as a hinge joint, using constraints that are solved using the SI or PGS constraint solver. Each rigid body has 6 degrees of 
freedom, and such joint constraints remove degrees of freedom. If the constraints are not properly solved, this will result in joint gap. !
As an alternative, we can simulate joints as mobilizers of a multibody. In other words, a multibody consists of a chain or tree of bodies that are connected by 
mobilizers. Each mobiler adds one or more degrees of freedom. This is a reduced or general coordinate method, as we will discuss more in detail later. !
In the context of reduced coordinate multibody simulation, this presentation I focus on propagation methods that have O(n) complexity. There are also 
multibody methods that explicitly build and invert the full matrix, such as the Composite Rigid Body Algorithm (CRBA) as discussed by Roy Featherstone. Due 
to the large matrix inversion, the time complexity is O(n^3). Nevertheless, for smaller n, such as a ragdoll or vehicle, the CRBA algorithm is attractive and has 
some performance benefits over the ABA. You can see comparisons and details in Jakub Stępień PhD thesis.



Roy	  Featherstone	  &	  RBDL

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Articulated Body 
Algorithm, 
Spatial Vector Algebra, 
Plucker 
Coordinates, 
Geometric Algebra

!
There are several ways to explain a reduced coordinate method to deal with joints in O(n) time, for n mobilizers. Roy Featherstone has written several papers 
and books about this topic, and introduce the Articulated Body Method. The presentation by Roy is very math-heavy and requires knowledge of geometric 
algebra with spatial vector algebra relying on concepts such as plucker coordinates, dual spaces. Gino van den Bergen introduced those concepts yesterday, 
in the context of inverse kinematics, in the Math Tutorial. If you are interested in an implementation that closely follows Roy Featherstone’s book, I recommend 
looking at the open source RBDL library at github. 



Abhinandan	  Jain	  &	  Simbody

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Joints simulated as 
constraints or as 
mobilizers in a 
multibody  
      in O(n) time

Abhinandan Jain from the Nasa Jet Propulsion Laboratory has written an excellent book about multibody dynamics. He uses a different way to derive the 
equations of motion that lead to a O(n) algorithm, similar to the Articulated Body Method. He uses spatial operators, not to be confused with spatial algebra. 
The open source Simbody project lead by Michael Sherman at Stanford University follows the notation and conventions of Jain’s book. 



Brian	  Mirtich	  &	  Bullet	  Physics

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Brian Mirtich, 
Jakub Stępień, 
Stephen Thompson  
Bullet Physics

Brian Mirtich has written an excellent introduction to the Articulated Body Algorithm in his PhD thesis, chapter 4. We will use his spatial vector algebra notation, 
which doesn’t require knowledge about plucker coordinates and such, so its presentation is a bit less alienating to mere mortals. The latest Bullet physics 
engine follows Brian Mirtich’s notation and conventions.  !
Stephen Thompson implemented the first version of the reduced coordinate algorithm and I adapted it for proper integration into Bullet. Also, I integrated it 
tightly with the collision detection and existing constraint solver, and I added constraints limits and motors for btMultiBody. !
Jakub Stępień extended the btMultiBody implementation in Bullet with multi-DOF joint mobilizers that are not described in Mirtich’s thesis, but you can find the 
explanation in Roy Featherstone’s book.



ABA+SI	  =	  Articulated	  Island	  Algorithm

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Jakub Stępień 
PhD thesis and 
MultiDOF support 
for Bullet btMultiBody

Jakub Stępień extended the btMultiBody implementation in Bullet with multi-DOF joint mobilizers that are not described in Mirtich’s thesis, but you can find the 
explanation in Roy Featherstone’s book. !
Jakub also just finished his PhD thesis on the topic of integrating the Articulated Body Algorithm with Sequential Impulse. So if you are interested in mixing 
Articulated Body Algorithm and Sequential Impulse, I can highly recommend reading his thesis for much more details.



Contact	  constraints

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Setup of contact constraints 
with variable degrees of 
freedom, and self collision 
between child bodies of a 
multibody.

When formulating contact constraints, we need to take into account if the bodies involved are single rigid bodies or multibody. For a multibody we need to know 
the actual child bodies (links) involved. It is possible to have self-collision between different child bodies (links) of a multibody. !
The size of the jacobian is the number of degrees of freedom, which is 6 for single rigid bodies. For multibody the number of degrees of freedom depends on 
the mobilizers.



Friction	  Constraints

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Coulomb Friction 
(approximation) requires 
special treatment in 
combination with an 
MLCP solver

Constraint  
Solver 

(Velocity and Position)

The magnitude of Coulomb friction is dependent on the normal contact force. This dependency is usually not expressed as an LCP condition. Usually there is a 
special treatment for the friction force limits, not part of the usual numerical method used to solve the constraints. It is important to realize what the impact is of 
the friction model and how it can be integrated into the numerical method solving an MLCP. Alternatively there is a cone approximation that explicitly encodes 
the dependency as an LCP condition. 



From	  Sequential	  Impulse	  to	  PGS	  MLCP

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Comparing Sequential 
Impulse with projected 
Gauss Seidel and 
preparation for 
direct MLCP 
       solvers

The normal contact, friction and other constraints are solved together using a constraint solver. As Erin Catto already mentioned, constraints can be formulated 
and solved on different levels: on the acceleration, velocity and/or positional level. In our context, we assume we deal with velocity constraints (make sure 
objects don’t move towards each other when in contact) and positional constraints (move objects out of penetration). !
In addition, we may solve those levels combined (coupled) as in Baumgarte stabilization, or we may solve the velocity and position constraints as two 
independent problems. !
In gaming we usually use a variation of a Sequential Impulse (SI) solver or equivalent projected Gauss Seidel (PGS) solver, Erin Catto talked about this 
previously.  !
If your solver produces always perfect results that you are happy with, you could leave this presentation now, because the purpose of my talk is to explore how 
we can improve or augment this loop to get better results. 



NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Kenny Erleben and his students published a paper describing the non-smooth conjugate gradient method. If you already have a sequential impulse solver 
implementation, it is pretty easy to extend it to support this method. Its convergence is better than plain PGS, but we need to let the solver use enough solver 
iterations to show benefits. I’ll show some graphics with convergence comparison between PGS and NNCG in Bullet. !



Position/Velocity	  Integration

Contact  
Constraints

Friction  
Constraints

Coriolis 
Forces Update 

(Velocity dependent)

Constraint  
Solver 

(Velocity and Position)

Integrator 
(Velocity, Position Update)

Inertia Update

Compute Contacts

Joints

Semi-implicit or 
semi-explicit  
Euler integration

The semi-explicit or semi-implicit Euler integrator is usually used in the game physics  context to update the position and orientation. When dealing with 
multibody the integrator will update all links in a multibody by propagating the transform from the base to the leaf links.



How	  to	  improve	  Sequential	  Impulse

● Overview	  of	  Rigid	  Body	  Simulation	  Loop	  
!

● Add	  improved	  MLCP	  block	  solvers	  
○ Moving	  from	  SI	  to	  generic	  PGS	  MLCP	  solver	  
○ Try	  out	  NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers	  
!

● Add	  O(n)	  solver	  for	  tree/chain	  equality	  joints	  
○ Featherstone	  Articulated	  Body	  Algorithm	  
○ Mixing	  ABA	  with	  Sequential	  Impulse



Equations	  of	  motion

We use the Newton laws to govern the motion of rigid bodies. In the absence of interaction the motion of rigid bodies would be simple: we take a time step of 
delta t and perform an (semi) explicit Euler integration step. The term in red is called the Coriolis force, a non-linear term. The combination of explicit Euler 
integration, a large time step and non-linearity can cause energy gain. For this reason, the term is often left out in game physics libraries. It is possible to use 
implicit integration to deal with this Coriolis term in a better way. I added some slide at the end, thanks to Dirk Gregorius. Also, Joseph Cooper made a 
derivation, used in the Open Dynamics Engine. 
http://lost-found-wandering.blogspot.com/2013/01/gyroscopic-forces-in-ode.html !!
When we add physical interaction between objects, we can express interactions using constraints resulting to constraint forces or impulses. While the external 
forces are given, we need to compute the constraint forces or impulses.



Question

The	  ultimate	  question	  we	  want	  to	  answer	  is	  -‐	  how	  big	  of	  an	  
impulse	  do	  we	  need	  to	  apply	  to	  make	  the	  objects	  stop	  moving	  
towards	  each	  other?	  
!
Let's	  assume	  we're	  applying	  an	  impulse	  of	  magnitude	  1.0	  (unit	  
impulse)	  and	  see	  how	  big	  of	  a	  velocity	  change	  that	  would	  
cause.

Dennis Gustavson has an interesting blog about game physics bits, and in one posting he describes the working of sequential impulse in layman’s terms. 
http://tuxedolabs.blogspot.com/2010/08/explaining-rigid-body-solver.html When we want to compute the magnitude of an impulse in a certain direction, we can 
do this empirically: measure the effect of an impulse on the velocity. Let’s look into this a bit closer and relate this empirical method to other methods that 
compute the relationship between impulse and velocity.



Effect	  of	  an	  impulse	  on	  velocity

r

!
When we apply an impulse to a rigid body, it can have an effect on the linear velocity and the angular velocity of the center of mass. Using Newton’s second 
law and the relationship between impulse and force, the change in linear velocity v, or delta v is Impulse over mass. In a similar way we can compute the 
change in angular velocity, delta omega, using Newton’s second law for rotation. Note that we need to know the effect of an impulse on the velocity at a point 
on the body, not the effect on the center of mass. The torque impulse can be computed given an impulse and a point at an object using the cross product of the 
relative position r with the impulse.



Single	  body	  Effective	  Mass	  (inverse)

● Effective	  mass	  is	  change	  in	  velocity	  per	  impulse	  
○ projected	  on	  the	  normal

r
n

The velocity in a point on a body is related to the linear and angular velocity of the center of mass. The velocity at a point on the body adds the linear velocity v 
and the cross product of omega and the arm vector r. Let’s call the point velocity u, to distinguish it from the linear velocity v. !
When we substitute the effect of the impulse on linear and angular velocity of the center of mass, into the point velocity formula from previous slide, we get our 
desired effect, delta u for body a. The effect of an impulse is a change in velocity, a vector. !
The scalar number, expressing the linear relationship between the application of a (unit) impulse and the change in velocity projected on the impulse direction 
(normal) can be viewed as the “inverse effective mass”. Note that the impulse magnitude is 1 of course, so the division by the impulse magnitude has no effect. !
So far we only looked at a single body a. If we collide with a static, non-moving object, we are done.



Effective	  Mass	  (inverse)

B

A

For a collision between two dynamic moving rigid bodies, where body a and body b have positive mass, we compute the relative velocity by subtraction. The 
same applies for the change in relative point velocity between two colliding bodies. Again we need to substitute the impulse into the formula of the previous 
slide, and we get the actual effect. To get the scalar inverse effective mass ratio we project the change in relative velocity onto the normal, using a dot product, 
just as we did with a single body. 



!
!

!
• Black	  box	  interface	  
• computeDesiredDeltaVelocity	  
• computeEffectiveMass(unitImpulse)	  
•applyImpulse	  

!
•Black	  box	  could	  be	  particle,	  rigid	  body,	  multibody

Resolving	  a	  single	  collision

?

?
B

A

Now we know the effect of an impulse, and we know that there is a linear relationship between the impulse and the relative point velocity, we can go back to 
the original problem: how to make the objects stop moving towards each other.



Resolving	  a	  single	  collision

?

?
B

A

Given the desired velocity change, and inverse effective mass, we can compute the correction impulse p. 
If we substitute the delta v and the effective mass we showed previous, we get the collision impulse formula, also described by Chris Hecker long time ago.



Mixed	  Linear	  Complementarity	  Problem

v

p
v=Ap+b

We can substitute A for the effective mass inverse, and lambda for impulse p, and b for the change in relative velocity. 
Then we add two conditions, that the impulse has to be larger than zero (don’t attract) and either the relative velocity is zero, or the impulse is zero. Now we 
end up with the Linear Complementarity Problem, or LCP. 
In the case of a collision, we have an inequality: the constraint condition has to be larger or equal than zero. !
There are a few other ways of formulating this problem, I can recommend Kenny Erleben’s SIGGRAPH 2013 tutorial on this topic. For a single constraint row, 
the problem is not very interesting. Once we get more constraint rows, the problem becomes more interesting and harder to solve. We call the problem Mixed 
when there is a mix of inequality and equality constraints. If all constraints rows are equality constraints, we can solve the problem using a linear equation 
solver, which is a different topic. Lets have a look at the most popular way of solving the MLCP: projected Gauss Seidel aka Sequential Impulse.



3	  variations	  of	  building	  the	  A	  matrix

A

n K n
T

J M J
-1 T

There are several variations to compute the A matrix for the MLCP. We already discussed the unit impulse method. A very similar collision matrix K method 
uses the cross product matrix notation. We can also compute the A matrix by explicitly building the Jacobian matrix and the inverse mass matrix and 
multiplying them.



Unit	  Impulse	  method

There are various ways to compute this (inverse) effective mass, or A matrix. For a single contact the A ‘matrix’ is just a 1x1 scalar value. In the previous slides 
there is an intuitive way to get to this matrix. You could think of this as a unit-impulse method: you apply a unit impulse and read the effect on the relative 
velocities. 



Cross	  product	  matrix

Another way of computing the A matrix for a contact is using the 3x3 collision matrix K. The collision matrix K can be computed using cross product matrices. 
This cross product matrix is also known as a skew symmetric matrix, and it can be also used for the derivative of a rotation matrix. In a nutshell, the cross 
product matrix of a vector ‘a’ can be multiplied with another vector to get the cross product with ‘a’. The 3x3 cross product matrix is often written as a small 
superscript cross symbol above the vector.



Collision	  Matrix	  K	  method

Using this cross product matrix, we can formulate the 3x3 K matrix. The derivation steps to go from the top formula to K is described in Brian Mirtich’s PhD 
thesis in Appendix A2. Using the collision matrix K we get to the A matrix by pre/post multiplying with the n vector. We will see the this collision matrix again in 
the interaction between Featherstone and MLCP constraints. One of the benefits of the K matrix is that it can be re-used between several constraint rows that 
use the same bodies and local positions. For example the normal constraint and one or two friction constraints can re-use the same K matrix, saving some 
computation (double-check this).



Jacobian	  and	  Mass	  Matrix	  method

A third way of computing the same A matrix is by multiplying with a mass matrix. For a contact constraint, we stack the linear (normal) and angular (arm cross 
normal) in a 1x6 vector for a single object, or 1x12 vector for two objects. This vector is also called Jacobian, see also Erin Catto’s talk slides. We get the A 
matrix by pre/post multiplying the inverse mass matrix with the jacobian. The 3 methods look a bit difference, but the end result is the same A matrix, or in the 
case of a single constraint row, a scalar a.



Creating	  the	  MLCP	  input

• Sparse	  large	  vector	  and	  large	  matrix	  
– ‘Eigen’	  math	  library	  or	  custom	  

btMatrixX<...>,btVectorX<...>	  
!

• Convert	  constraint	  info	  into	  A	  and	  b	  (rhs)	  
btMLCPSolver::createMLCP	  or	  
btMLCPSolver::createMLCPFast



MLCP	  Interface
class btMLCPSolverInterface 
{ 
public: 
  virtual ~btMLCPSolverInterface() 
  { 
  } !
  //return true is it solves the problem successfully 
  virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x,  
                                          const btVectorXu & lo,const btVectorXu & hi, 
                                          const btAlignedObjectArray<int>& limitDependency,  
                                          int numIterations, bool useSparsity = true)=0; 
};

We use an abstract interface to try out various MLCP solvers. As you can see, the interface takes a few more parameters, next to the A, b and x (lambda). 
There are low and hi limits for each variable, and limit dependencies for friction. Furthermore there are some additional parameters specific to iterative 
constraint solvers, the number of iterations, and if the A matrix is sparse or not.



Gauss	  Seidel	  MLCP	  solver
for (int k = 0; k <numIterations; k++) 
{ 
 for (i = 0; i <numRows; i++) 
 { 
  delta = 0.0f; 
  { 
   for (j = 0; j <i; j++)  
    delta += A(i,j) * x[j]; 
   for (j = i+1; j<numRows; j++)  
    delta += A(i,j) * x[j]; 
  } 
  x [i] = (b [i] - delta) / A(i,i); 
 } 
}

In its original form, Gauss Seidel is a very simple iterative numerical method to solve the MLCP. See also the Cottle and Dantzig book for much more in-depth 
information. In this slide you can see an actual working implementation in a handful of lines. The x vector is the same as the lambda vector in our previous 
slide. Note that the A matrix is sparse: typically we only have 12 non-zero elements in each row, so with some minor modification we make it a very efficient 
implementation using sparse operations. 
You can notice the division by the diagonal element A(i,i). This is one of the reasons of numerical issues: once the diagonal elements go close to zero we can 
introduce all kind of errors. Some popular workaround for this is to add a small epsilon to the main diagonal, also called Constraint Force Mixing (CFM). Adding 
small values to the main diagonal can help avoiding numerical explosions, but you changed the problem so you don’t get the actual result you need. Adding 
CFM can make the simulation look less stiff, more ‘spongy’ or ‘springy’. The pure Gauss Seidel method doesn’t deal with inequality so we need to amend this.



Projected	  Gauss	  Seidel
for (int k = 0; k <numIterations; k++) 
{ 
 for (i = 0; i <numRows; i++) 
 { 
  delta = 0.0f; 
  { 
   for (j = 0; j <i; j++)  
    delta += A(i,j) * x[j]; 
   for (j = i+1; j<numRows; j++)  
    delta += A(i,j) * x[j]; 
  } 
  float aDiag = A(i,i); 
  x [i] = (b [i] - delta) / A(i,i); 
  if (x[i]<lo[i]) 
   x[i]=lo[i]; 
  if (x[i]>hi[i]) 
   x[i]=hi[i]; 
 } 
}

In order to deal with inequality constraint rows, we can project the solution vector x within upper and/or lower bounds, as is shown in the blue lines.



Cheating	  with	  Friction
for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
    delta = 0.0f; 
    { 
   for (j = 0; j <i; j++)  
     delta += A(i,j) * x[j]; 
     for (j = i+1; j<numRows; j++)  
          delta += A(i,j) * x[j]; 
    } 
    float aDiag = A(i,i); 
    x [i] = (b [i] - delta) / A(i,i); 
    float s = 1.f; 
    if (limitDependency[i]>=0) 
    { 
      s = x[limitDependency[i]]; 
    } 
//in case of friction constraint rows, the lo/hi is the friction coefficient 
    if (x[i]<lo[i]*s) 
      x[i]=lo[i]*s; 
    if (x[i]>hi[i]*s) 
      x[i]=hi[i]*s; 
  } 
}

Now we want to add friction constraint rows, using an approximation of Coulomb friction. We want the friction force to be linearly related to the normal force of 
the same contact. This introduces a dependency that is not part of the original MLCP problem. The easiest way is to cheat and adjust the lower and upper 
limits based on the most up-to-date value of the related normal constraint force (or impulse) within the iteration loop. The blue lines show the minor changes to 
support this friction hack. !
One issue is that adding such dependency makes the problem non-linear and we cannot prove convergence. The hack seems to work pretty well and for 
gaming purposes we are often happy with the result. There is a non-hacky way of introducing the friction constraint row dependencies into the MLCP problem 
formulation, but there will be zero’s on the main diagonal. In other words, we cannot use PGS (and related SI) to solver this problem. !
The projected Gauss Seidel implementation was first published in the Open Dynamics Engine around 2004, known as the Quickstep solver. Kenny Erleben 
documented the approach in his PhD thesis and his book ‘Physics Based Animation’.



Cone	  Friction

In many cases, the friction cone is approximated by a pyramid. When using projected Gauss Seidel, it is possible to use cone friction by using two orthogonal 
friction directions and clamping the two friction directions simultaneously into the cone.



Sequential	  Impulse	  (SI)	  versus	  PGS
for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
    delta = 0.0f; 
    { 
      for (j = 0; j <i; j++)  
        delta += A(i,j) * x[j]; 
      for (j = i+1; j<numRows; j++)  
        delta += A(i,j) * x[j]; 
 } 
    x [i] = (b [i] - delta) / A(i,i); 
    float s = 1.f; 
    if (limitDependency[i]>=0) 
    { 
      s = x[limitDependency[i]]; 
    } 
    if (x[i]<lo[i]*s) 
      x[i]=lo[i]*s; 
    if (x[i]>hi[i]*s) 
      x[i]=hi[i]*s; 
  } 
}

for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
  delta =c.m_rhs- c.m_appliedImpulse; 
  dV1Dotn= c.m_n.dot(body1.m_deltaV)+ 
c.m_relpos1XNormal.dot(body1.m_angVel); 
  dV2Dotn=//just like dV1Dotn 
  delta-= dV1Dotn*c.m_jacDiagABInv; 
  delta-=dV2Dotn*c.m_jacDiagABInv; 
  sum =c.m_appliedImp +delta; 
  if (sum < c.m_lowerLimit){ 
    delta = c.m_lo - c.m_appliedImp; 
  c.m_appliedImp = c.m_lowerLimit; 
  } else if (sum > c.m_upperLimit) { 
    delta = c.m_hi-c.m_appliedImp; 
    c.m_appliedImp = c.m_upperLimit; 
  }else 
    c.m_appliedImpulse = sum; 
    bodyA->applyImpulse(n*delta); 
    bodyB->applyImpulse(-n*delta); 
  } 
}

Erin Catto published the Sequential Impulse method, which is closely related to the projected Gauss Seidel method in previous slide. The SI method is more 
intuitive and applies its operations directly using the rigid body and constraint objects, rather than creating the A, x and b vectors explicitly. A benefit of SI over 
PGS is that we can tune and optimize specific parts of the solver, because we can make use of the specific constraint types and rigid body information. Plain 
PGS has not such knowledge: the type information is lost during the conversion into the A matrix and b vector. As you can see, the x/lambda vector of PGS is 
the accumulated applied impulse, stored in the constraint (row). In addition, SI applies the impulse directly to the rigid body velocity, while PGS uses only the 
the x/lambda vector. The innerloop of PGS that accumulates the delta using the x vector is basically the dot product in SI on the body linear/angular velocity. 
The dot product applies to linear and angular velocity for each body, so in total there are 12 values: the total number of degrees of freedom (DOF) for both 
bodies.We will see later that when integrating Featherstone with PGS/SI, we will use the DOFs of the Featherstone multibody instead. !
In other words, the difference between SI and PGS is not in the algorithm but in the implementation.



Gauss	  Seidel	  Hinge	  Stress	  Test

● Item1

(video demo of PGS Hinge Stress Test) 
In this stress test we place a blue 1000kg cube on top of a green cube of mass 1. The green cube is attached to the world using a hinge with the world up-axis 
as hinge axis. The PGS solver obviously doesn’t converge to a stable solution, and the hinge constraint is visibly violated.



Chain	  with	  various	  mass	  ratios
1:1 1:10 1:100 1:1000

In a different stress test we can see a problem if we attach a large mass to a chain of objects with smaller masses. The blue ball is fixed with mass 0. All the 
green balls have mass 1 and the red ball has mass 1, 10, 100 or 1000. All objects are attached using a point to point (also known as spherical or ball socket) 
constraint. In this test we are using default earth gravity and a timestep of 60 Hertz and 10 solver iterations using a sequential impulse solver aka PGS.



Chain:	  SI/PGS	  at	  1:1000,	  60Hz

Here is a plot for the constraint rows with a mass ratio 1:1000. The velocity error is not reducing, even after adding many iterations: it stays around 0.02. Only 
after 10000 iterations or so, it goes to zero, obviously impractical for game or real-time purposes with current hardware.



How	  to	  improve	  Sequential	  Impulse

● Overview	  of	  Rigid	  Body	  Simulation	  Loop	  
!

● Add	  improved	  MLCP	  block	  solvers	  
○ Moving	  from	  SI	  to	  generic	  PGS	  MLCP	  solver	  
○ Try	  out	  NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers	  
!

● Add	  O(n)	  solver	  for	  tree/chain	  equality	  joints	  
○ Featherstone	  Articulated	  Body	  Algorithm	  
○ Mixing	  ABA	  with	  Sequential	  Impulse



Nonlinear	  Nonsmooth	  
Conjugate	  Gradient	  solver

● Extension	  to	  a	  SI/PGS	  solver	  
● Projected	  Conjugate	  Gradient	  
● Uses	  PGS	  to	  compute	  residual

Before looking at direct MLCP solvers and Featherstone, there is an interesting algorithm called Nonlinear Nonsmooth Conjugate Gradient or NNCG. This is 
also an iterative constraint solver, where we interleave the PGS iterations with a Conjugate Gradient step. When we solve the PGS constraint rows, we can 
keep track of the constraint error, using the ‘delta’. This can be used as the residual for the Conjugate Gradient solver. More details are in the paper. In our 
experience, the NNCG convergence is better than PGS, but this is usually visible at a high number of solver iterations.



NNCG	  Residual	  at	  1:1000,	  60Hz

Now using 1000 iterations the benefit of NNCG becomes clear: at around 400 iterations we approach convergence, while PGS doesn’t converge until 10000 
iterations or higher.



Direct	  solver:	  Dantzig

• Original	  version	  has	  no	  friction	  
– Added	  in	  Baraff	  1994

Video of the Hinge stress test, using the Dantzig MLCP solver. 
Todo: present basic steps of Dantzig without friction, and with friction and show the convergence curves. !
The Dantzig algorithm to solve an LCP problem shows very good convergence for problems with large mass ratios. It is common for direct LCP solvers to be 
more sensitive for degenerate cases, such as elements on the main diagonal of the A matrix close to zero. We can add some small epsilon (also called 
constraint force mixing, CFM) to the main diagonal to reduce the numerical issues. In addition, it is possible to detect a failure in the Dantzig algorithm, and use 
a backup algorithm such as Lemke or PGS. !
Baraff extended the Dantzig algorithm to deal with friction, in his SIGGRAPH 1994 paper “Fast Contact Force Computation for Nonpenetrating Rigid Bodies”. !
For an excellent introduction to the Dantzig algorithm and the friction extension, see chapter 14 of the book “Guide to Dynamic Simulations of Rigid Bodies and 
Particle Systems” by Murilo Coutinho, Springer Verlag 2013. !
Let’s have a look at the performance. 



Dantzig	  solver	  performance

Obviously, the Dantzig algorithm doesn’t scale well for larger problems. It takes about 1 millisecond to solve 200 constraint rows. !
You can see the scaling problem in the right graph: at 600 constraint rows it takes about 30 milliseconds just for the solver. It is possible to use the Dantzig 
algorithm as a block solver as part of a PGS solver.



Remarks	  on	  Dantzig	  solver

● Can	  be	  used	  as	  a	  block	  solver	  with	  PGS	  
● Occasionally	  fails,	  needs	  fallback	  (PGS)

The projected Gauss Seidel method solves one constraint row at a time. As Erin Catto already mentioned in his presentation, it is possible to solve multiple 
constraint rows at a time, using a block solver. Dantzig has good convergence and pretty good performance for reasonably small constraint sizes so it can be a 
good candidate for solving blocks.



Direct	  solver:	  Lemke

Another MLCP solver is the Lemke algorithm. Like the Dantzig algorithm, Lemke is a direct pivoting solver. Lemke can deal with a larger class of MLCP 
problems, compared to PGS and it converges well. In the worst case, the Lemke algorithm takes an exponential number of steps, and in some cases it fails to 
find a solution. Like Dantzig, it is a good idea to detect failure and limit computation time and use a fallback algorithm such as PGS.



Reformulating	  a	  bounded	  LCP	  to	  regular	  LCP

The Lemke algorithm takes a LCP problem, without lower or upper bounds. This means that we have to reformulate a bounded LCP problem (BLCP) with 
lower and/or upper bounds into a different LCP problem without those bounds. Given a LCP of n variables and lower and upper bounds for each variable, we 
can convert the problem into an LCP with 2n variables. !
See Appendix A1 of this paper for a derivation of BLCP to LCP http://www.cs.duke.edu/~parr/nips10.pdf and the Matlab program https://github.com/
erwincoumans/num4lcp/blob/master/matlab/test_lcp_bounds.m 



One	  more	  way	  to	  add	  friction

John Lloyd ‘Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation’.

There exists some methods to integrate the friction constraints as part of the LCP matrix, see the mu and E sub matrices. One issue is that this matrix is not 
positive semi-definite, with zeros on the main diagonal. This means we cannot use PGS/SI to solve the problem, and we need a more advanced LCP solver 
such as Lemke. !
See also John Lloyd ‘Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation’.



PATH,	  COMPASS	  and	  so	  on

● PATH	  is	  a	  closed	  source	  MLCP	  solver	  
○ High	  quality	  but	  still	  solver	  failures	  
!

● COMPASS	  is	  an	  MLCP	  solver	  written	  in	  Matlab.	  Pretents	  to	  be	  
PATH	  clone.	  
○ Can	  use	  a	  C++	  to	  Matlab	  bridge	  
○ We	  also	  created	  a	  C++	  conversion	  
○ Turned	  out	  to	  be	  not	  robust

Another MLCP solver is the Lemke algorithm. Like the Dantzig algorithm, Lemke is a direct pivoting solver. Lemke can deal with a larger class of MLCP 
problems, compared to PGS and it converges well. In the worst case, the Lemke algorithm takes an exponential number of steps, and in some cases it fails to 
find a solution. Like Dantzig, it is a good idea to detect failure and limit computation time and use a fallback algorithm such as PGS.



How	  to	  improve	  Sequential	  Impulse

● Overview	  of	  Rigid	  Body	  Simulation	  Loop	  
!

● Add	  improved	  MLCP	  block	  solvers	  
○ Moving	  from	  SI	  to	  generic	  PGS	  MLCP	  solver	  
○ Try	  out	  NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers	  
!

● Add	  O(n)	  solver	  for	  tree/chain	  equality	  joints	  
○ Featherstone	  Articulated	  Body	  Algorithm	  
○ Mixing	  ABA	  with	  Sequential	  Impulse



Articulated	  Body	  (Multibody)
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When dealing with bodies using reduced or generalized coordinates there are some conventions that are different from maximal coordinate methods. Bodies 
are called links, and links are connected by joints. In a similar way to a compound rigid body we view the hierarchy of bodies/links connected by joints as a 
single entity, often called Multibody or a ‘Featherstone Hierarchy’. We follow the naming conventions of Brian Mirtich in his PhD thesis, chapter 4 gives an 
excellent introduction of the Featherstone Articulated Body Algorithm (ABM). !
When dealing with maximal coordinates rigid body and pairwise constraints, we solve the constraints, get the change in velocity for each body and then we 
compute the velocity and position update individually. In the generalized coordinates approach the position, velocity and  acceleration of links are expressed 
relative to a parent. So in order to compute those states, we start from the base and recurse into the child links. Another difference between the maximal and 
generalized coordinate approaches is the way we deal with mass and inertia: in maximal coordinates pairwise constraints, we only consider the mass and 
inertia of the individual two bodies involved. In the generalized coordinates approach, we compute the inertia of the entire hierarchy. Let’s first see how we can 
propagate the position and velocity for a Featherstone hierarchy.



Joint	  Coordinates	  q	  (Revolute)

!

!

The pose of an articulated hierarchy is defined by its joint coordinates. In the case of a hinge, or revolute joint, such coordinate q is the joint angle, a scalar 
value. In case of a slider, or prismatic joint, the joint coordinate is the joint translation, again a scalar value. Each link has a local frame F. The child frame F_i 
can be computed by starting at the parent frame F_i-1 and adding the transform from parent frame to joint frame, and from joint frame to child frame. The 
transform from parent frame to joint frame is usually constant. The transform from joint frame to child frame depends on the joint coordinate, joint location and 
joint type. Here we show an example computation for a revolute joint, with a joint angle q_i and a joint axis u_i. The R is the rotation matrix for the joint axis u_i 
at an angle q_i.



Relative	  Link	  Velocities	  (Revolute)

!

!

The joint velocities q’ is also a scalar value, for a revolute and prismatic joint. We can convert the joint velocities into relative link velocities of the center of 
mass frame F_i, relative to the parent frame F_i-1. This is the velocity due to the motion of joint i. For a revolute joint, the relative angular velocity is simply 
multiplying the joint velocity q’ times the joint axis u_i.  !
todo: perhaps add prismatic joint example too



Propagating	  Link	  Velocities

!

!
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We can propagate the relative link velocities from parent to child to get the link velocities. We can start at the base, using a link velocity relative to some 
coordinate frame, say O, and propagate the velocity outward to the child links. !



Propagating	  Link	  Velocities

omega[0]=baseAngularVelocity; 
vel[0] = baseLinearVelocity; 

!
// Calculates the velocities of each link (and the base) in its local frame 
for (int i = 1; i <numLinks; i++) 
{ 

int parent = m_links[i].m_parent; 

!
// Transform parent vel into this frame, store in omega[i], vel[i] 
// SpatialTransform 
omega[i] = m_links[i].m_cachedRotParentToThis * omega[parent]; 
vel[i] = m_links[i].m_cachedRVector * vel[parent]; 

!
// Add relative link velocities due to joint i 
omega[i] += getJointVel(i) * m_links[i].m_angularJointAxis; 
vel[i] += getJointVel(i) * m_links[i].m_linearJointAxis; 

}

Now the same propagation of link velocities in basic C++ code. Note that the links are sorted so that all links that appear closer to the base come before child 
links. This means we can also support tree structures, not just a serial chain.



Propagating	  Link	  Accelerations

!

!

In a similar way we can propagate angular accelerations. We can derive the accelerations by differentiating the velocity propagation formulas. A tricky part is 
figuring out the derivative of the relative linear and angular velocity. The red terms in the formulas are Coriolis and centrifugal terms. There is still a part 
missing, the joint acceleration term q’’.



6D	  Spatial	  algebra	  notation

As we saw in last slide, the expressions are getting very long and tedious to deal with. In order to shorten those expressions we can use spatial algebra 
notation. There is not a single standard convention, and there are subtle differences between authors. In fact, the spatial algebra notation by Featherstone in 
his earlier work is slightly different in newer work. Here we use the notation as presented in Brian Mirtich’s PhD thesis. 



Spatial	  transform



Spatial	  acceleration

Using spatial vector notation the propagation of acceleration looks much simpler. The spatial acceleration ‘a’ of link i is adds the spatial coriolis acceleration ‘c’ 
and the joint acceleration q’’s. Note that the spatial joins axis ‘s’ differs for each joint type. The dimension of s  is the number of degrees of freedom x 6.



Articulated	  Equation	  of	  Motion

The equation of motion for articulated bodies is very similar to the usual way in maximal coordinates. Note that the mass matrix M is usually called I in the 
context of articulated bodies.



Init	  Spatial	  Inertia	  and	  ZA	  forces

F_za[0] = [- m_baseTorque,- m_baseForce]; 
I[0] = base_inertia;//this is a 6x6 matrix 
// Initialize the isolated spatial inertia and za force for each link 
for (int i = 1; i <numLinks; i++) 
{ 

F_za[i]=[-rot_from_world[i]*m_links[i].m_appliedTorque, 
rot_from_world[i]*m_links[i].m_appliedForce]; 

I[i] = m_links[i].m_inertia; 
} 
for (int i = numLinks-1; i >=1; i--) 
{ 

int parent = m_links[i].m_parent; 

!
I[parent] += pXi * (I[i] - h[i] h[i]' / D[i]) * iXp 
F_za[parent] += pXi * (F_za[i] + I[i]*c[i] + h[i]*Y[i]/D[i]) 

}

The initialization of the isolated spatial inertia and za forces is straightforward.



Compute	  Link	  Accelerations

!!
• accel[0] = I_inverse[0]*F_za[0]; 

!
for (int i = 1; i <numLinks; i++) 
{ 
 int parent = m_links[i].m_parent; 
 SpatialTransform(rot_from_parent[i], m_links[i].m_cachedRVector, 
                   accel_top[parent], accel_bottom[parent], 
                   accel_top[i], accel_bottom[i]); 

 joint_accel[i] = (Y[i] - SpatialDotProduct(h_top[i],  
h_bottom[i], accel_top[i+1], accel_bottom[i+1])) / D[i]; 

 accel_top[i] += coriolis_angular[i]  
+ joint_accel[i] * m_links[i].getAxisTop(0); 
 accel_bottom[i] += coriolis_linear[i] +  

• joint_accel[i] * m_links[i].getAxisBottom(0); 
!

• }

Todo: cleanup this code and explain a bit



1. Propagate	  Link	  Velocities	  and	  isolated	  terms	  
!
!

1. Propage	  Spatial	  Inertia	  and	  ZA	  forces	  
!
!

1. Compute	  Link	  Accelerations

Articulated	  Body	  Algorithm

By combining the propagation methods to compute link velocities, spatial articulated inertias, bias forces and acceleration computation we have Featherstone’s 
Articulated Body Algorithm in its basic form. From here we can add support for contact and other constraints and multi-DOF joints.



How	  to	  improve	  Sequential	  Impulse

● Overview	  of	  Rigid	  Body	  Simulation	  Loop	  
!

● Add	  improved	  MLCP	  block	  solvers	  
○ Moving	  from	  SI	  to	  generic	  PGS	  MLCP	  solver	  
○ Try	  out	  NNCG,	  Dantzig,	  Lemke	  MLCP	  solvers	  
!

● Add	  O(n)	  solver	  for	  tree/chain	  equality	  joints	  
○ Featherstone	  Articulated	  Body	  Algorithm	  
○ Mixing	  ABA	  with	  Sequential	  Impulse



Featherstone	  Joints	  versus	  Constraints

!

! !

Contact

Joint 
Limit

Joint 
Motor

The Articulated Body Method deals with the forward dynamics of chain or tree structures. The ABM cannot deal with closed loops, contacts, joint limits or 
motors by itself. It is possible to add such constraints using an MLCP solver or Sequential Impulse.



What	  is	  the	  effect	  of	  an	  impulse	  on	  the	  velocity?

Featherstone	  with	  Contact	  Constraints

!

!

Contact

A J M J-1 T

n K n T

We can use any of the three methods to build the A matrix and solve the MLCP to add support for contact constraints with Featherstone multibodies. In Brian 
Mirtich’s PhD thesis the K matrix is computed for multibodies. In Jakub Stępień’s PhD thesis the big matrix approach is used using the Composite Rigid Body 
Algorithm. As I mentioned before, for some smaller problems such as ragdolls and vehicles the O(n^3) CRBA approach can be faster than the O(n) ABA. !
Here we will measure the effect of an impulse by re-using the Articulated Body Method forward dynamics algorithms. This is similar to the description by 
Vangelis Kokkevis in his ‘articulated characters’ GDC 2004 talk, although Vangelis used forces and accelerations, while we use impulses and velocities.



Effect	  of	  an	  impulse	  on	  velocity

• We	  could	  use	  an	  unmodified	  ABM	  algorithm

?

? B

A

We could use a forward dynamics algorithm, such as the Articulated Body Method and measure the effect of a unit force on the acceleration. The acceleration 
before applying the force might not be zero, so we need to measure the acceleration when we apply zero force (f_0). Then we can measure the acceleration 
after applying a unit force and the acceleration due to the unit force is the difference. If we assume the delta time is one, we get to the delta velocity by taking 
this acceleration difference. 



Simplified	  ABA
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Spatial Z.A. impulse
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Test Impulse 
(Unit Normal)

Although calling the unmodified ABM twice will work, we can do better. When applying an impulse, the Coriolis and gravity forces can be ignored because the 
time duration is nearly zero so the effect of forces approaches zero. This means that the ABM can be simplified. In addition, we don’t need to call the ABM 
twice using this formulation. You can find the derivation and the pseudo code in Brian Mirtich’s PhD thesis around page 141.



Multibody	  Contact	  Jacobian
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Multibody	  Contact	  Jacobian
for (int i = 0; i < num_links; ++i)  
{ 
  //compute world to local transform matrix 
  const int parent = m_links[i].m_parent; 
  const btMatrix3x3 mtx(m_links[i].m_cachedRotParentToThis); 
  rot_from_world[i+1] = mtx * rot_from_world[parent+1]; 

!
  // transform normal and relative position p to local frame 
  n_local[i+1] = mtx * n_local[parent+1];  
  p_minus_com[i+1] = mtx * p_minus_com[parent+1] - m_links[i].m_cachedRVector; 

!
  // calculate the jacobian entry 
  if (m_links[i].m_jointType == btMultibodyLink::ePrismatic) { 
    results[i] = n_local[i+1].dot( m_links[i].getAxisBottom(0) ); 
  } 
 } 
//store jacobian for this link and traverse branch to base 
while (link != -1)  
{ 
  jac[6 + link] = results[link]; 
  link = m_links[link].m_parent; 
}



Adapting	  SI/PGS	  for	  multi	  body?
for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
    delta = 0.0f; 
    { 
      for (j = 0; j <i; j++)  
        delta += A(i,j) * x[j]; 
      for (j = i+1; j<numRows; j++)  
        delta += A(i,j) * x[j]; 
    } 
    x [i] = (b [i] - delta) / A(i,i); 
  } 
}

for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
    delta =c.m_rhs- c.m_appliedImpulse; 
    dV1Dotn= c.m_n.dot(body1.m_deltaV)+ 
c.m_relpos1XNormal.dot(body1.m_angVel); 
    dV2Dotn=c.m_n.dot(body2.m_deltaV)+ 
c.m_relpos2XNormal.dot(body2.m_angVel); !
    delta-= dV1Dotn*c.m_jacDiagABInv; 
    delta-=dV2Dotn*c.m_jacDiagABInv; 
  
    sum =c.m_appliedImp +delta;  !
    bodyA->applyImpulse(n*delta); 
    bodyB->applyImpulse(-n*delta); 
  } 
}

Lets have a look at SI/PGS again and look at the parts that need some change. The elements on the main diagonal of A, colored in blue, will need to take into 
account the multibody. In addition, the dot product of the velocity on the jacobian (normal) needs some change.  !
In case we would use PGS, the changes just happen in building the A matrix. For a regular 3D rigid body, the size of the Jacobian is 6, the number of degrees 
of freedom. In the case of a multibody, the size of the Jacobian is the total degrees of freedom of the Multibody.  !
In case of when we use Sequential Impulse, the ‘applyImpulse’ method, here in green, will have to apply the impulse on the multibody and propagate it through 
all links. And finally the right hand side, or b, needs to take into account the multi body as well. 



Multibody	  SI
for (int k = 0; k <numIterations; k++) 
{ 
  for (i = 0; i <numRows; i++) 
  { 
    delta =c.m_rhs- c.m_appliedImpulse; 
// dV1Dotn= c.m_n.dot(body1.m_deltaV)+ c.m_relpos1XNormal.dot(body1.m_angVel); 
    for (int i = 0; i < ndofA; ++i)  
      dV1Dotn += jacobians[c.m_jacAindex+i] * deltaV[c.m_dVelAindex+i]; 

!
    dV2Dotn=c.m_n.dot(body2.m_deltaV)+ c.m_relpos2XNormal.dot(body2.m_angVel); 
  
    delta-= dV1Dotn*c.m_jacDiagABInv; 
    delta-=dV2Dotn*c.m_jacDiagABInv; 
  
    sum =c.m_appliedImp +delta;  

!
    bodyA->applyImpulse(n*delta); 
    bodyB->applyImpulse(-n*delta); 
  } 
}

The main change in the innerloop of Sequential Impulse for a Featherstone multibody is that we have a dot that has the full width of the degrees of freedom of 
the multi body, 
instead of 6 (3 linear and 3 angular) for a regular rigid body. The two lines in red show the new version, with the original version commented out in green.



Constraints	  for	  Joint	  Limits,	  Motors

!

! !

Joint 
Limit

Joint 
Motor

Contact

Once we have a way to relate the applied impulse to the change in velocity, or effective mass, we can use the same mechanism we used for contact 
constraints also to simulate joint limits and joint motors using constraints.



Featherstone	  ABA	  Demos

Show a few demos that demonstrate some issues with sequential impulse (SI)/projected gauss seidel (PGS). We will re-use the same demos while we explore 
other solvers. !
1) Stack heavy on light objects 
2) Door hinge hitting heavy object 
3) Ragdoll joint gap 
4) Forklift joint gap 
5) Heavy tank on tracks



3DOF	  Spherical	  Joint

We can simulate a multi degree of freedom joint such as a 3-DOF spherical joint by stacking several 1-DOF joints together. Similar to using Euler angles we 
can run into singularities, causing instability. One solution is extending the system to support multi-DOF joints. @todo explain basic changes that have to be 
made going from 1-DOF to multi-DOF and point to references with mode details.



!

MultiBody	  Self-‐Collision

!

Contact

Once I had the simulator up and running, for a few days I experienced instabilities, ‘explosions’ etc. 
So I went through the implementation, verified values, added damping and joint friction (a motor with target velocity zero), 
but still the instabilities sometimes happened. !
It turned out that the contact normal between to links connected by a prismatic joint, 
was pointing in an orthogonal direction to the joint axis. This means that no matter how much impulse you apply, 
you will not reduce the constraint error along the prismatic axis, when applying an impulse in the contact normal direction. !
The collision detection needs to be aware of the joint axis. When using the SAT to determine the separating axis, we can only use the prismatic axis for 
example. In addition, we can project the separating vector onto the joint axis, 
to make sure to only add valid components to the Baumgarte stabilization. 



Challenges	  with	  Featherstone	  
and	  some	  workarounds

● Stability,	  energy	  gain	  
○ damping,	  clamping,	  implicit	  integrator	  
!

● Collision	  Performance	  issue	  
○ O(m	  *	  n)	  for	  m	  constraints	  and	  n	  joint	  dofs	  
!

● API	  to	  setup	  a	  multibody	  needs	  more	  work	  
○ Simbody	  has	  auto	  converter

Semi implicit (or semi explicit) Euler integrator in combination with a fixed time step and the non-linearity of the Coriolis/velocity dependent forces can cause a 
feedback loop between those forces and angular acceleration. This can quickly add a lot of kinetic energy. High-quality simulators often use a variable time 
step in combination with sophisticated methods to measure the error and deal with it. 
For real-time applications using a fixed time step, we can avoid huge kinetic energy gain by using an implicit integrator for the velocity-dependent forces. 
Alternatively, we can clamp the maximum angular velocity and apply enough velocity damping to suppress the unwanted effect. !
Another drawback of reduced coordinate methods is that each contact constraint requires O(n) time to evaluate the Jacobian and effective mass, and 
application of the applied impulse. In some cases, such as a ragdoll lying on the floor, each limb (link) has one of more contact constraints with the floor, 
resulting in a O(n^n) performance, rather than O(n). 
Some caching of the computation could bring it back to O(n) on average, but there could be still a spike if all those contact constraint caches become invalid at 
the same time. 



Conclusion

● Featherstone	  ABA	  can	  be	  easily	  mixed	  with	  Sequential	  
Impulse	  and	  is	  useful	  for	  games	  
!

● Big	  matrix	  direct	  MLCP	  solvers	  can	  be	  useful	  as	  a	  block	  solver	  
within	  a	  PGS/SI	  loop	  
!

● It	  is	  fun	  and	  rewarding	  to	  explore	  better	  constraint	  solving	  
methods
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Extra	  Slides



Implicit	  Integration	  Coriolis	  Forces



Removing	  all	  degrees	  of	  freedom	  
using	  	  zero	  inverse	  mass/inertia

By default, a 3D rigid body with positive mass and inertia has 6 degrees of freedom. If we want to create a static object we could create a 3D rigid body with 
positive mass and inertia and lock all degrees of freedom using a fixed constraint. A rigid body locked using a fixed constraint that is solved using projected 
Gauss Seidel will show similar issues to the hinge stress test in previous slide. Instead of using a fixed constraint to reduce all degrees of freedom for a rigid 
body, we usually set the inverse mass to zero. This effectively disables the motion for the object and makes its mass ‘infinitely large’. There are a few benefits 
using this approach: there are no convergence issues and there are no constraints to be solved. 



Creating	  a	  hinge	  	  
using	  	  zero	  inverse	  mass/inertia

(video demo of  Hinge Stress Test by setting 5 components of the inverse mass/inertia to zero) !
In a similar way of creating a fixed rigid body, we can also create a hinged rigid body with 5 degrees of freedom removed by setting the related components of 
inverse mass and inverse inertia tensor to zero. This can be useful to simulate hinged objects such as doors. A benefit is that the door will not have any error in 
the hinge axis, no matter how large the mass of objects colliding against the door. Aside from a hinge, we can use the same mechanism to reduce the degrees 
of freedom of bodies to emulate 2D planar objects. Obviously this is not a generic solution, but it can be useful in some cases. !
Another way of looking at this is: by setting components of the inverse mass and/or inverse local inertia to zero, we can control the effective mass experienced 
at a point on the object in a certain direction. We can create a similar effect by using Featherstone, as we will see soon. When interacting with a hierarchical 
body simulated using the Featherstone Articulated Body Method (ABM) or Articulated Body Algorithm (ABA), we can experience a similar effect: in some 
directions the effective inverse mass or inverse inertia can be zero. 



Chain:	  SI/PGS	  Residual	  at	  1:1

When solving a constraint row, the SI/PGS solver computes the change in accumulated impulse, needed to drive the error for this constraint row to zero.  
This change, or delta impulse, can be used as a measure of current constraint error, or residual. Here is a plot for the constraint rows.



Chain:	  SI/PGS	  at	  1:1000,	  240Hz

Here is a plot for the constraint rows with a mass ratio 1:1000 at a higher frequency. The constraint error doesn’t converge either, but due to the smaller 
timestep, the error is much smaller, around 0.005. The error is basically related to the impulse that the gravity applies in one timestep.



Chain:	  NNCG	  Residual	  at	  1:1

Looking at the curves of the residual, the remaining constraint error at each iteration, we see a similar convergence to PGS. In this test we don’t see the same 
‘spikes’ in the residual as mentioned in the NNCG paper: at some stage the Conjugate Gradient algorithm can get stuck in a local minimum, and we need to 
restart the search with a different start direction.



Chain:	  NNCG	  at	  1:1000,	  60Hz

Here is a plot for the constraint rows with a mass ratio 1:1000 at 60 hertz. The graph looks similar to PGS, although at around 80 iterations the curve seems to 
start converging.


