
Asset Build Systems

Kris Lang
Client Technical Director
Game Technology Group @ SOE

Asset Build Systems

C:\>Perforce2DiscImage.exe

What is an asset build system?

We don’t need an Asset build System
A modern tale of horror

Asset Build Systems

Kris Lang
Client Technical Director
Game Technology Group @ SOE

Why do I want a build system?

Why do I want a build system?Why do I want a build system?

It does everything for you

Everyone can run the entire process

Why do I want a build system?

It knows about everything

Why do I want a build system?

What are the parts of a build system?

What are the parts of a build system?

List inputs Process

Inputs

Outputs

What are the parts of a build system?

List inputs

Determine settings

What are the parts of a build system?

List inputs

Determine settings

Data conversion tools

What are the parts of a build system?

List inputs

Determine settings

Data conversion tool

Change detection

What are the parts of a build system?
List inputs

Determine settings

Data conversion tool

Change detection

Failure handling

What are the parts of a build system?
List inputs

Determine settings

Data conversion tool

Change detection

Failure handling

</what is an asset build system>

The rest of this talk assumes you
think this is the best idea ever

- intermission -

This sounds awfully programmery,
why should TA be involved? ಠ_ಠ

How does a build system work?

I’m sold on the idea, what do I need to
know?

What makes it a build system?

What makes it a build system?

a.k.a. Why a batch file isn’t good
enough

What makes it a build system?

It does dependency checking and change
detection

What makes it a build system?

It considers more than one asset at a time

?

What makes it a build system?

It does multiple levels of data conversion

What makes it a build system?

… it does dependency checking and
change detection
… it considers more than one asset at
a time
… it does multiple levels of data
conversion

Do I have to make one from scratch?

… it does dependency checking and
change detection
… it considers more than one asset at
a time
… it does multiple levels of data
conversion

That feels like a lot of work...

Do I have to make one from scratch?

… it does dependency checking and
change detection
… it considers more than one asset at
a time
… it does multiple levels of data
conversion

A selection of build tools

A selection of build tools

Batch files

Well, it’ll work

A selection of build tools

make

The granddaddy of all build systems

* so old
there’s no

icon

A selection of build tools

msbuild

xml based, command line processing

A selection of build tools

ant

xml based, extensible via java

A selection of build tools

cmake

custom language, generates native builds

A selection of build tools

scons

end to end python

How do we use these tools?

↻
How do we use these tools?

S P T

sources → processing → targets

?

http://en.wikipedia.org/wiki/%E2%86%BB
http://en.wikipedia.org/wiki/%E2%86%BB
http://en.wikipedia.org/wiki/%E2%86%92_(disambiguation)
http://en.wikipedia.org/wiki/%E2%86%92_(disambiguation)

SPT

Mesh Geometrymesh2geo

SPT

Mesh

Material
Description

Geometrymesh2geo

mesh2mtrl

SPT

Mesh

Material
Description

Runtime
Material

Geometrymesh2geo

mesh2mtrl mtrl2rtm

SPT

Mesh

Material
Description

image

Runtime
Material

Geometry

Texture

mesh2geo

mesh2mtrl mtrl2rtm

image2tex

SPT

Mesh

Material
Description

image

Runtime
Material

Geometry

Texture

mesh2geo

mesh2mtrl mtrl2rtm

image2tex

SPT

Mesh

Material
Description

image

Runtime
Material

Geometry

Texture

mesh2geo

mesh2mtrl mtrl2rtm

image2tex

Build system SPT

<psuedo_code>

Build system SPT

Describe the processing for every
type of file that you have
for typeOfFile in ourGame:

processor = Processor(typeOfFile.whatToDo)
build.processors[typeOfFile] = processor

Build system SPT

Tell it about instances of those files
for sourceFile in ourGame:

processor = build.processors[sourceFile.type]
target = processor.add(sourceFile)
targets += target

Build system SPT

Tell it about the dependent files…
repeat
while(len(targets) > 0):

for sourceFile in targets:
processor = build.processors[sourceFile.type]
newTargets += processor.add(sourceFile)

targets = newTargets

Example

</psuedo_code>

Example

Brilliant game pitch…
There’s a ball rolling around a level,
and you can’t let it fall off

Example

Concept only

Example

Asset Details:
Multiple ball materials, one
mesh
Multiple Levels
Levels have props on them

Example

Ball material
list

Level list

The ball

Example

Ball materials

Ball mesh

Levels

Ball material
list

Level list

The ball

Example

Ball materials Ball textures

Ball mesh Ball geo

Levels

Ball material
list

Level list Level geos

The ball

Example

Ball materials Ball textures

Ball mesh Ball geo

Levels

Props

Ball material
list

Level list

Prop list

Level geos

The ball

Example

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

Example

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

5 functions!

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

Oh noes!

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material list

Level list

Prop list

Level geos

The ball

=
Before After

After a change

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material list

Level list

Prop list

Level geos

The ball

=
Before

Prop_A.prop
AwesomeProp_B.prop
SortaOkProp_C.prop
Crate.prop

After
Prop_A.prop
AwesomeProp_B.prop
SortaOkProp_C.prop
Crate.prop

Example

Ball materials Ball textures

Ball mesh Ball geo

Levels

Prop meshes Prop geos

Prop texturesProp materials

Props

Ball material
list

Level list

Prop list

Level geos

The ball

Welcome to:
Build systems 437 - Experience

a.k.a. Reality
a.k.a. Learn from my many mistakes

Experience

This can be a big system

Experience

This can be a big system
Watch your scope

Draw a dependency diagram

Be prepared to spend some time with it

Experience

Creating the dependency tree can
take time

Allow the user to select a subset

Always have your build system do the entire
thing

Experience

Creating the dependency tree can
take time

Allow the user to select a subset

Always have your build system do the entire
thing

Experience

Put your intermediate files into their
own directory

/

Experience

Put your intermediate files into their
own directory

/MyProject/BuildTemp/*

Put your intermediate files into their
own directory

/

Experience

Dependencies between files cause
the most bugs

Experience

Dependencies between files cause
the most bugs

Missing dependencies - things don’t rebuild
when they should
Extra dependencies - things build when they
shouldn’t

Experience

Strike a balance between export time
scripts and the build

Earlier is better for feedback

Later is less expensive

Experience

Strike a balance between export time
scripts and the build

Earlier is better for feedback

Later is less expensive

Experience

Be explicit with what you include in
the build

Avoid directory scans

Experience

Be explicit with what you include in
the build

Avoid directory scans

</how does a build system work>

Sources-Processing-Targets
Dependency tracking
Change detection

- intermission -

Who should run this thing?

- intermission -

Who should run this thing?
Everybody, all the time

- intermission -

Who should run this thing?
Isn’t this too complicated for artists to use?

- intermission -

Who should run this thing?
Isn’t this too complicated for artists to use?

- intermission -

Who should run this thing?
Your continuous build system should
ALWAYS build everything.

How do I make one?

How do I make one?

SCons

ĕs-kŏnz, skŏnz, skōnz
scons.org

SCons

What do I need to know?
The project root is important

SCons

What do I need to know?
Action = processing

Builder = SPT encapsulation

Environment = the build

SCons

What do I need to know?
SCons calls you back

Dependency setup and processing are
separate

SCons
here

SCons

python

you

myBuild

SCons

SConscript

environment

builder builder*

builder* myFile

src
tgt

src
tgt

src
tgt

src
tgt

Example

<code>

Example

Replace a batch file
for %%F in (*.file)
do
(

convert.exe %%~dpnxF %%~dpnF.output
)

Example

With SCons

Example

Create the build environment
env = Environment()

Example

Create a builder
env = Environment()

def my_action(target, source, env):
convert(source[0].path, target[0].path)

env[‘BUILDERS’][‘my_build’] =
Builder(action = my_action)

Example

Tell SCons about the files
env = Environment()

def my_action(target, source, env):
convert(source[0].path, target[0].path)

env[‘BUILDERS’][‘my_build’] =
Builder(action = my_action)

for src_fn in get_source_files():
env.my_build(source = src_fn,

target = get_target_fn(src_fn))

Example

Tell SCons about the files
env = Environment()

def my_action(target, source, env):
convert(source[0].path, target[0].path)

env[‘BUILDERS’][‘my_build’] =
Builder(action = my_action)

for src_fn in get_source_files():
env.my_build(source = src_fn,

target = get_target_fn(src_fn))

Done

Example

Run it
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets …
my_build(["myfile1.target"], ["myfile1.
source"])
.
<spew removed for sanity>
.
my_build(["myfile50000.target"],

["myfile50000.source"])
scons: done building targets.
Exit code: 0

Example

Run it again
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets …
scons: done building targets.
Exit code: 0

Dependent files

psd → tga → texture
for psd_fn in get_psd_files():

tga_fn = as_tga(psd_fn)
tex_fn = as_tex(tga_fn)

Dependent files

psd → tga → texture
for psd_fn in get_psd_files():

tga_fn = as_tga(psd_fn)
tex_fn = as_tex(tga_fn)

env.tga_to_texture(tex_fn, tga_fn)
env.psd_to_tga(tga_fn, tex_fn)

Running an exe

Use a generator builder
def my_generator(target, source, env):

return “bin/convert.exe {0} {1}”.format(
source[0].path, target[0].path)

env[‘BUILDERS’][‘my_build’] =
Builder(generator = my_generator)

Sphere Psychosis SConscript

SCons - other fun stuff

SCons - other fun stuff

Multicore support
num_cpu = int(os.environ.get('NUM_CPU', 2))
SetOption('num_jobs', num_cpu)

SCons - other fun stuff

Build cache
Why build it if someone else already has?
CacheDir(‘//server/MyProject/BuildCache’)

opting out
NoCache(‘myfile.file’)

SCons - other fun stuff

Incredibuild
BuildConsole /command="python MyBuild.py"

SCons - other fun stuff

*The rest of SCons

SCons - gotcha’s

*check notes

</how do I make one>

Other interesting things you can to
with a robust build system

Other interesting things you can to
with a robust build system

Hook it into your asset reload system

Other interesting things you can to
with a robust build system

Asset validation

Other interesting things you can to
with a robust build system

Asset DB generation

Other interesting things you can to
with a robust build system

Validate designer data

Other interesting things you can to
with a robust build system

Automated smoke and unit tests

Other interesting things you can to
with a robust build system

Tool install

Other interesting things you can to
with a robust build system

Code build

Final thoughts

...and then lunch

Final thoughts

It’s 2014, use some kind of build
system

Final thoughts

Talk to your coders / build / deploy
guys, see what they’ve got going on

Final thoughts

If you’re comfortable with Python,
have a look at SCons

Final thoughts

Start small, with a single system or
process...

Final thoughts

Think big, you can do a huge amount
of stuff with a build system

Final thoughts

Do not allow assets to break the build,
leave that to the coders

Thanks

Next Level Games
Sony Online Entertainment

Jim Randall

Asset Build Systems

Kris Lang
Client Technical Director
Game Technology Group @ SOE

