
Out of Sight, Out of Mind: Improving
Visualization of AI Info

Mika Vehkala
Principal Game Tech Programmer @ Guerrilla Games

Contents

● Introduction

● Part I – Visualizing Runtime Flow

● Part II – Record and Playback Data

● Part III – Visualizing Algorithms

● Behind the scenes

Introduction

● Improving visualization of your data helps in

● Debugging

● Verification

● Understanding

● Challenge your workflows and tools

Simple example

This?

Or this?

Nice properties for a debug tool

● Minimize impact on client

● Low memory requirement

● Low processing power requirement

● Lean API for minimal debug code

=> Separate process, communicates over network

● Clutter-free UI

● Shouldn’t need user’s manual for the tool

● Helps to keep visualization simple as well

Part I – Visualizing Runtime Flow

● What are the main components

● Who manages the lifetime

● What is the lifetime

● What are the dependencies

Sequencer

● Hierarchy to show structure

● Timeline and tracks to show history

Hierarchical Timeline View

Tracks Items

Log entries

Part II – Record and Playback Data

● Simple and data agnostic

● Register binary feed and callback

● Add arbitrary data { ID | Time | Byte[*] }

● Scrub timeline to send back to feed

Use in Killzone Shadowfall

● MP Bot AI debugging and validation

● Gameplay animation debugging

● Player

● NPCs

● Took ~1 week to integrate and hook-up
debug calls

Part III - Visualizing Algorithms

● How to visualize algorithms

● Not just the end result but step-by-step

● No access to renderer

● Long turn-around time to use in-game
rendering

● Also, alternative viewport

I’ve found out that...

● Visualizing data is not trivial

● Iterate but keep it simple

● Time is of the essence

● Collapse into single image

● Series of snapshots

Behind the scenes

● ReView communicates using RPC over TCP/IP

● Major contributor to extensibility!

● C# for building the tool

Quick look at the code

Feed.Connect("localhost", 5000);

track_id = Feed.AddTrack(parent_id, “Name”);

item_id = Feed.AddItem(track_id, time, ”Name”);

Feed.AddLog(item_id, time, flags, ”Log entry”);

box_id = Feed.AddBox(time, Inf, Matrix.Identity, center, size, Color.Green);

Feed.RemovePrimitive(box_id, later_time);

id = Feed.AddMesh(time, Inf, Matrix.Identity, center, flatShaded : true);

Feed.AddTriangle(id, time, pointA, pointB, pointC, Color.GreenAlpha);

Takeaway

Don’t guess what happened...

...know what happened!

That’s All!

Follow @MikaVehkala

ReView can be found at www.reviewtool.net

Special thanks to Maurizio De Pascale

Suggested reading;

Edward Tufte, The Visual Display of Quantitative Information

http://www.reviewtool.net/

Out of Sight, Out of Mind: Improving
Visualization of AI Info

Bill Merrill
Senior AI Engineer at Turtle Rock Studios

Introduction

• Our version of a cheap, but powerful
tool for historical debugging

• Tools are always worth the time, but
it’s never too late

• Can be built at very low cost
• I should’ve done it sooner

Videos

Quick Peek Event Timeline
Color-coded by category

Event Metadata
Event detail in chronological
Order within the frame Aggregated Data

Current BT status
Current Path, target, etc

Background on Evolve and TRS

● Online cooperative/competitive first/third-person
shooter

● Always plenty of AI, even in full online games

● AI agents also must play all roles in liu of human
players

● Rapid development; need to leverage lots of playtest
data

Bare Bones Requirements

● Get it up and running in a man-week

● Took almost as long to prepare this presentation 

● Rapidly and safely add data; vis comes second

● A dedicated server recording should feel like a
local session

● Runs on server, so minimum CPU overhead
during recording

Stupid-Simple Data Stream

● Self-contained events and metadata in a contiguous
memory stream

● Metadata typically very small, and easily quantized

● Store frame markers to establish timeline

● If the stream is nearly full, we purge old contents
● “Version 2.0” would handle this more intelligently

● The data’s all there - reconstruct and render later on a
visual client

Metadata Event

AI Logic

Writing the Stream

New Render Frame

Frame Event

Interpreting the Stream

• Timeline scrubs between render frames
• We always know what happened in the

past, relative to T
• Turn small atomic events into useful data
• Higher granularity than this example

(details later)

New Path

Plan Completed

Path completed

Next Leg

Next Leg

New Plan

Path completed

T

Versioning

● We simply distinguish between a current version and a
last-readable version – pretty standard

● Each event type’s serialization handler can support
multiple versions

● Periodically strip old version support, just so the code is
tiny

SERIALIZE()

{

 VEC3_RANGE(m_pointStart,4000.f);

 VEC3_RANGE(m_pointEnd,4000.f);

 if(version >= 3)

 {

 FIELD(m_flightType);

 }

}

Game Data Compatibility

● We always know the originating build’s stamp; sync to
data as necessary to reference large data

● When possible, events store inputs, and re-execute during
timeline scrubbing

● Determinism is important, but only needed in a small subset of
systems

● Some events just serialize results if they’re tiny

Minimizing Metadata

Metadata

Node ID
Failed Precon ID

NodeEvalFailed • Minimal, just relates directly to static BT data
• Sync to older game data as necessary

Metadata

Query ID
Context

TPSQuery • For a tactical query, we need to see all
candidates and their scores (tons!)

• Way too much to store, so we store the context
used to conduct the query

• Just re-execute tactical query; metadata as input

Referencing Static Data

Re-Query With Stored Input

PathFind
FlightPath

Etc…

Playback & Scrubbing

● Timeline shows a range of time with color-coded markers

● Linearly process entire stream up to the displayed frame

● Use gamepad to scrub back and forth, detach camera,
select different agents

● Aggregating larger context under the hood for a complete
picture

● Anything traditional debug displays can show… but with
history

Videos

Videos

Videos

Version 2.0

● Obvious next step is to visualize in external app

● Though, something to be said about being in-game

● Stream over the network, “infinite” history

● Or write events to a DB, such as a free NoSQL
key/value store

● Visualize on the web or anywhere else

● Better visualization, animation/position rewind

● In the works, bit-by-bit as necessary

Conclusions

● So much data: from any bug report, we
have recent history for all active agents

● We see everything that’s happened on a
remote dedicated server

● Engineers new to the team were able to jump in and track
down tricky bugs in a fraction of the time…

● We observed and fixed bugs we weren’t even looking for

● Replaced all the disjointed visualization junk we had
before

 * almost

*

says Troy

If you have a need for historical debugging
and have no resources to spare, try

something like this.

You won’t regret it.

Conclusions

