Designers are from Venus,
Programmers are from Uranus

Designer/Programmer Interaction






Old School design loop: New School design loop:
Design writes specifications doc Systems designer writes doc
Programmers go off and Programmers implement the tool

implement content designers use

Playtest Programmers support designers

Repeat, maybe with tool and feature changes
Rinse and repeat until ship. Then
keep doing it




Why This Talk? ...Features

» Typical roshambo: designers, programmers, artists

» Staff is separated by career tracks, game features are
not \

* Increas
tight C(

» Theset
harmo



Basic differences
* Process differences
* Work motivations
* Measure of succes

Working together

 Establishing Connection
* Communication

* Ongoing techniques Bridge Methods
» Technical Designers
* Dual class CD




Basic Differences

battle hardend

- ks Srrk
A fAC Paglre
et Ly

~Loeen: bmiS




Design

Free form
Collaborative
Largely discovered
Very situational

Programming

Structured
Abstract
Systematic
Typically more
isolated




A consistent player
contract
Simplicity

Programming

Performance
Scalability
Maintenance
Simplicity










P s

SRS N

y ' 5:32 PM




&)




Design Pillars







Programming Pillars

Solve the Problems You Have

An engineering tendency is to expand the requirements of a problem to solve other problems
that we can imagine we might have one day. In many cases this is unnecessary. The original
problem might get redesigned. The feature might get cut. Sometimes the added requirements
are good, but the implementation was too early to know how it really should have been done.

Solve the problems you have. Wait until you know you need a feature before you implement it.
The code will be faster, smaller, done sooner, easier to understand, and easier to maintain.

Fast Doesn't Mean Sloppy

YouzanBpend@wolveeksEo@loftRight,Bribne@veek@oRoftdast@nd@hen@wolnore@veeksdixingheugsk
overthefextBix@nonths.BpendiEhe@wo@veeks.?

“Hack”dsthot@@irty@vord.BAthack@s@E@obustBolution@onstructed@vith@eryfittle@ode.dt@night@otbe@sHast]
asvefheeditBomeRay.@t@nightthot@eliver@lIRhe@wouldbefhice”Features.However,Bvhat@fhack@oes,dtR
does@vell.Erhe@vholeBointdsEohotBupportdt@gainAintiBome@imednheFuture, Bofft’sthot@obust@r@oess
not@lo@vhatfit’ sBupposed@o@overydime®henFou'veiefeated@helurposedftaking@®he@xpedientath.@



Programming Pillars

Know How It Broke

Keep It Simple

Sometimes a bug seems to magically go away. This doesn't mean
it actually did. If we don't know how it happened in the first
place then we can't be sure it won't come back, or that we have
the proper solution.

If a random change fixes the bug, revert the change until you
know why it fixes the problem.

. If a bug magically goes away, trace the previous revision until
you know what should have been done to fix the bug, then
compare that to what was actually done and see if it was the
right fix.




It Better Work:

Compile it.
Run it.
Use it.

Don't give it to someone else unless you're sure it compiles, runs, and performs the way it's
expected to perform. If your recipient doesn't know your system then committing incomplete or|
incorrect code wastes time as they try to debug what you should have already debugged.z

cibS

Leave No Tracks

NINJAS

They're everywhere.

Everything we write should look like one person wrote it all.




rogramming Pillars

Play the Game You're Making

Uh... Sam, when they say we're supposed to
eat our own 'dog food'... oh, never mind.

We make games we want to play, and we play the games we make. We build a game to be as fun
as it can be for us, and we assume anyone else like us will like the game the way we've made it.

Sometimes our tasks seem to bury us, but we have to use the product to engineer it properly,
and to give feedback to the designers for things we could engineer better. Always make time to
play the game regardless of your workload.

Use the Right Tool

Every tool has things it does well. Every tool can be used wrong.

Use the right programming language, the right algorithm, the right data structure, the right
amount of customizability, the right amount of flexibility, the right balance of speed
optimization versus memory optimization.

Know who and what you're supporting. Know your minimum requirements. Know how long you
expect to use the system. All of these things help determine the right tool.




FUN
A consistent player
contract
Simplicity

Programming

Performance
Scalability
Maintenance
Simplicity










Establishing connection




Communication Clarity
Vocabulary

Consistency is king

Naming systems
Allowing for flexibility at definition

Be EXPICIT
Priorities:
Must Have/Would Be Nice
Post Ship
Estimates
Don't give snap estimates
Ranges show certainty



IT'S THE BOXWITH SANII\IN IT,
IN THE CORNER OF MY lII:I’II}E




Other Communication

* Documentation
Design docs
Process
Content/Scripts

» Bug reports

Everything is broke,
Nothing Works

= |f you don't file bug reports

/ God kills a kitlten




Trouble spots

Work flow

Personal preferences
Pet peeves

Discovery
Big changes
Reprioritization
Crunch

The “contract”







Technical Designer

Needs twice the mentoring/management.

Can suffer from “green programmer” problems
Unapproved checkins, hacks, easter eggs
Poorly optimized code or potentially exploitable

Take care with overlapping influence

Should not be the main designer. Dual nature makes them
not focus as shrewdly on player’s needs

ABSOLUTELY THE FUTURE OF GAME DEVELOPMENT

sortof



Dual class Creative Director

Knows enough to push back on both sides, and
provide mediation

Ownership
Need to manage both sides



Points to ponder

Programmers and designers are very different people
Best systems come from melding design and engineering

Build a strong developer relationship
Communication is the heart
Trust is the soul

Cross discipline staff can be valuable, if...

Remember, we all want the same thing, to make something
great






