Optimizing Mobile Games with Gameloft and ARM

Stacy Smith

Senior Software Engineer, ARM
Adrian Voinea

World Android Technical Lead, Gameloft

Victor Bernot
Lead Visual Effects Developer, Gameloft

The Architecture for the Digital World® ARM

ARM Ecosystem

My first role in ARM was in Developer Relations
Developers came to us to ask for help
We couldn’t share their problems with the world

We couldn’t help everyone on a one to one basis

ARM

Developer Education

= Developer Education addresses that need

Since 2012 we've been sharing advice for graphical development

= Developers working with Developer Relations have remained separate

Until now!

3 ARM

Today’s Agenda

= Gameloft
= Batching (Iron Man 3)
= Culling and LOD (Gangstar Vegas)
= Texture compression (Asphalt 8)

= ARM (That’s me)

= Entry level implementations
= How to achieve similar results

5 ARM

lron Man 3

Improving Draw Calls and Rendering Techniques

6 ARM

Sorting Objects Before Rendering

= There is no good or bad way to determine which sorting method works best for a
game

= Sorting methods reduce overdraw and material changes at the cost of CPU

= Sorting algorithms used for Iron Man 3:
= Sorting by material
= Sorting by distance

: ARM

What Happens When No Sorting Is Applied!?

= Mid-range device: average |8FPS, constant micro-freezes
= Over 35 program changes per frame

= The skybox is rendered in the 27 draw call / 150

DrawCalls.3D

176

pealk: 178

avg: 101

v min: 0

min: 0

8 ARM

Sorting Objects Before Rendering

= Every shader program change is costly

It will depend a lot on the number of programs your game has
= Using a texture atlas will create the same materials, thus allowing better material sorting

= Sorting front to back will reduce the overdraw

: ARM

Material Sorting Results

= Reduced program changes to an average of 16
= Micro-freezes are reduced.

= Average 22FPS, smoother
gameplay

Material Sorting Results

= But we still have a lot of overdraw...

.. ARM

Front to Back Sorting

= And this is the desired result...

Front to Back Sorting

= Sorting by distance

= Front to back sorting will reduce the overdraw, skipping fragment shader execution for all the
dropped fragments

= The transparent objects must be drawn back to front for a correct ordering. The blending is done
with what is already drawn in the color buffer

= For OpenGL® ES 3.0, avoid modifying the depth buffer from the fragment shader or you will not
benefit from the early Z testing, making the front to back sorting useless

: ARM

Front to Back Sorting Results

= Sorting first by material, objects
with the same material then
sorted front to back

= Constant 24FPS

= The skybox is rendered in the
82" draw call / 135, being the
last opaque object

Dynamic Batching

Obijects that are not static batched and by nature require dynamic movement can be

batched at runtime

Objects need to share the same material to be batched into one single draw call

Dynamic batched objects require new geometry and the duplication of all the vertex

attributes, adding a constraint on the number of vertices

ARM

Dynamic Batching

* Should be applied to dynamic
objects that share the same material,
with a constraint on number of
vertices, like particles

,.\l\."' oW
3-," i
- oy ® e

ARM

Dynamic Batching

* In order for objects to be batchable at runtime:
= Objects need to use the same program
= Objects require identical textures
= Because of draw order constraint, objects require the same transparency property

= Because of duplicating vertex attributes, dynamic batching on objects requires a lower number
of vertices

; ARM

Sorting Objects Before Rendering

= Good approach to render your scene:

Sort all opaque objects based on material and distance from camera
This reduces scene overdraw

Reducing material change will help a bit on FPS, depending on the hardware, but also helps with

micro-freezes

For every consecutive draw call that has the same material, dynamic batching is simple and easy to

achieve
Reduces the actual number of draw calls
Reduced micro-freezes and gained ~6FPS by applying sorting algorithms

ARM

0.0
=
i

O
s

(q)
(a8
e

O

Q

@

C

(qe)
)

L

o

ol
£

)
-
T

R

19

Batching

= Deferred immediate mode rendering

= glDrawElements and glIDrawArrays have an overhead

= Less draw calls, less overhead

= DrawCall class stitches multiple objects into one draw call
= Macro functions in shaders make batching as simple as:

vec4 pos=transform[getInstance ()] *getPosition()

. ARM

Batching

/N
=

-
e

ARM

Batching

A q &
o -

uniform mat4 transforms[4];

ARM

Mixing up a Batch

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]
Mesh 2 [(1,2),(0,2),(0,0)]
Mesh 3 [(2,2),(2,1),(1,1)]
Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]
Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

23

ARM

Serving up a Batch

Vertex shader:
uniform mat4d4 transforms[3];
attribute vecd pos;
attribute float id;
volid main () {
matd4d trans=transforms]| (int)id];
glPosition=trans*pos;

}
GL Code:

float transforms[lo*instanceCount];
/* Load matrices into float array */

glUniformMatrix4fv (transID, 4, false, transforms);

y ARM

Scene Batching

25

Multiple geometries drawn in a single draw call:
drawbuilder.addGeometry (geol) ;
drawbuilder.addGeometry (geo?l) ;
drawbuilder.addGeometry (geo3) ;
drawbuilder.Build() ;

Always draws in the same order from a start and end index. Unused objects can be
scaled out to zero

Can lead to inefficiency of vertex shaders

ARM

Remixing a Batch

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]
Mesh 2 [(1,2),(0,2),(0,0)]
Mesh 3 [(2,2),(2,1),(1,1)]
Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]
Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

26

ARM

Remixing a Batch
Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2] <~

These IDs are the same

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

I U . .
Index: [7,8,9,4,5,6,0,1,2,0,2,3] But now the draw order is different

. ARM

Remixing a Batch
Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2, 1),(1,1)]
Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

= These vertices are still processed

Index: [0,1,2,0,2,3,7,8,9 ...But never get drawn

, ARM

Object Instancing

29

Multiple geometries or single object instances:

for (int i1=0;1<50;1++)
drawbuililder.addGeometry (geol) ;
drawbuilder.Build /()

Can implement LOD switching when objects are sorted front to back and correctly

culled

So let’s talk about culling

ARM

Batching / Draw Call Reduction
Case Study: Gangstar Vegas

30

Challenges

= Big map: ~16 km?
= Move by foot / by car / by plane

= |nterior/exterior environments

Streaming

= Constant streaming is needed :

= Meshes / LODs
Streaming thread with second OpenGL® context

Textures

Same streaming thread as meshes

Lower mipmap level always available

= Also streamed :
= Animations
= Sounds
= Physics data

32

ARM

Reducing Draw Call Count & Cost

= Draw calls are one of the major bottlenecks on mobiles
= On a very powerful device, stay under 300 draw calls
= On most devices => 100 to 200 at max

= Techniques used to reduce draw call count:
= Static batching
= 2D grid culling
= Near/far city

= To reduce draw call cost:
= Index & Vertex Buffer Objects (IBO /VBO) for static geometry

. ARM

2D Grid Culling

Objects are linked to the cells of a grid
= A simple 2D grid is used:
= |28x128 cells
= Cell size : 30m x 30m
= An object can belong to one or more cells

= Culling process:
= Get cells visible by camera’s frustum 2D projection on grid
= Middle cells: fully in frustum
= Border cells: partially in frustum
= Middle cell objects: directly added to render list
= Border cell objects: AABBoxes are tested vs camera frustum

= Grid is also used for streaming:
= Radius Add (175m) / Radius Safe (205m)

34

ARM

35

Frustum & Grid

ARM

Middle Cells

ARM

37

Border Cells

ARM

38

Objects will be drawn directly

ARM

39

AABOX culling => culled

S

/

Outside frustum => directly culled

ARM

AABOX culling => visible

ARM

Near/Far Cities

= Two different city meshes are used:

I. Near city:
= High resolution
= Streamed

2. Far city
= Low resolution
= Always available

ARM

41

Full city: 77 draw calls

Near City : 48 draw calls

wh\a

'k
! Y"'
«?r era

k\w = = Y
\Eﬁ\gy‘ ~

b
s
’-‘.

—— =
N sy n
TN O

L A e e Y

=

—\

y

/<
/\/
e

“ Top view, near city slice

ARM

Near City Materials

= Atlasing of albedo textures (batching & memory)
= Lightmaps
= Complex shaders (e.g. specular / reflection)

45

Full City: 77 draw calls

W
K u"-l’.]-’ "l
' :

-~
-
B l'

Far City: 29 draw calls

Cities Depth Slices

= Each city version has its own « depth slice »
= Using glDepthRange
= Little overlapping zone between the two (20m).

glDepthRange(0.0, 0.08);
CamZnear = 0.2;

CamZFar = 160;
RenderHighresCity();

glDepthRange(0.08, 1);
CamZnear = 140;
CamZFar = 2000;
RenderLowresCity();

48

ARM

49

Top view: far city and full frustum

ARM

Far City Materials

= Heavy atlasing
= Premultiplied Lightmaps

= Low cost shaders

50

LOD in Batches

ARM

LOD in Batches

ARM

LOD in Batches

ARM

LOD in Batches

ARM

LOD in Batches

ARM

LOD in Batches

01000100000
OOOOEOEOOE

ARM

LOD in Batches

ARM

LOD in Batches

ARM

AView to a Cull

Scene Batching

Timbuktu has 22 objects per environment layer

S= Skipped R=Rendered X=Scaled out
I 2 3 4 5 6 7 8 9 10 I 12 13 14 15 16 17 18 19 20 21 22
R [R [R R [R R R

. ARM

Imposterable

62

Timbuktu's Foliage:

= 4 types of alpha blended geometries, depth sorted

= Unpredictable interleaving of Grass, Tree, Bush and Shrub
First suggestion:
GTBSGTSBGTSBGTSBGTBSGTBSGTSBGTSBGTS

* No more than 3 dead models in a row

* Clumping of similar entities makes worst case more common

Second suggestion:
GGTTBBSSGGTTBBSSGGTTBBSSGGTTBBSS

= Allows consecutive pairs more cheaply
" Worst case still arises frequently,and is now even worse

ARM

Imposterable

= Solution:
* Foliage only varies in texture and scale

= All models topologically identical
= Zero skips
= Extra vec4 per instance

Asphalt 8

Effects, Draw Calls & Texture Data

ASPHAL@
A IQEDQNE -

. ARM

The Game

= Explosive action racing
= Multiplayer
= Physics engine

= Main FXs :

= Realtime soft shadows
Realtime reflections
Paraboloid

Road reflections
Proxies

= Main post FXs:
= Motion blur
= Lens flare dirt
= Color grading
= Vigneting

65

» REAUSTIC CRASHES AND CAR DAMAGE

>> LIVE MULTIPLAYER & ASYNCHRUNUUS CHALLENGES
— - . - ﬂl 1) m‘
. |

__._.@u!baa'

t_.

ARM

66

Game Effects

Optimizations / Draw Call Reduction

67

Culling adapted to a racing game :
= PVS (Potential Visibility Sets)
= AABBox culling

Software occlusion culling

LODs (distance or screen projection size)
VBOs / IBOs for 95% of mesh data

Physics on a separate thread

Texture streaming to reduce loading times

On a medium device (Samsung Galaxy SllI):

= 120 to 250 draw calls, depending on track

ARM

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy Slll)

68

1 statistics 52

ﬁéfglmﬁ‘umber of API function calls%

624902
Average vert/frame 323250,00
Average instanced vert/frame 0,00
Average draw/frame 138,00
Frame # 419
Number of API calls in current frame 2757
Number of draw calls in current frame 139
Number of vertices submitted in current frame 323658
APl call # 619473
Number of vertices in current draw call n/a

= 300k vertices

= 140 draw calls

= Not much overdraw
= Stop lights
= HUD

ARM

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy Slll)

* Post FXs disabled here

III \Iqmnm\ ‘riﬂji IIII,_m?m@A,!
&0 Shader 59 7
18

135
s
| B
B Shades 116
W s Shader 194

Program Neme
B 108 Shader 107
150 Sheder 158 |
£ Shases 8]
nw Shader 176 o
105 Shades 104 17
| Rt Shader 131 9
3 Shades 35 2
Wi Shader 137 5
B Shader173 3
B w Shader 146 ‘
B 20 Shader 209 3
a Shader 2]
13 Shader 122 9
B2 Shader 101 2
| € Shader 212 3
138 Shader 197 3
B Shader 110 ¢
B 2 Shader 206 10
N Shader 23 s
| B Shader 113 3
204 Shader 03 3
Shader 134 1
Shader 191 2
Shader 152 ¢
1
¢

* Shaders covering large screen areas must be cheap :

* Road =>
* Rocks =>
e Sky =>
* Cars =>
 Lights/Smoke =>

69

14
7

1
18
2/4

cycles (specular / normal map)
cycles
cycle
cycles
cycles

—

L e R~ e R~

S

S &

W W R D W W e W D DO

=3

- W e
-

Instructions Shortest path Longes.. Instances run
2L

145816
s
665856
95483
53480
2335
0708
136553
45254
63854
Mg
793
1634
oo
23033
1493
1N
31
2%
006
ase
2466
a0
s
n
537

»

ARM

ETCI and Alpha

= ~80% of the textures are ETC| compressed

" We keep uncompressed :
Splash / loading screens
Cars & tracks illustrations
Lens flare textures, LUTs...

= ~20% of the textures need alpha:
= Menus, HUD
= Billboards
= Specular maps ...

70

ARM

Split Alpha on Android™

= Using two ETCI| compressed textures
= One for Alpha
= One for RGB

= ETCI compression ratio: 4bpp (24bits)

= RGB: 6x
= RGBA: 3x

71

ARM

Billboards / HUD

Additive particles / lens flare textures do not need alpha !

72

Light Maps

Complete = DF * (LM + (LM * LM.a * brightBurn)) * overbright;

Road Specular Map

: =yl
"1 L5
RN SN A
J v
NN v -
&£ PN L e R
o g 7R s 3_
2 r SO,
oy MR TS !
: oy e e o
g L sk
. Rl
30
A

Ay AR

Alpha = AO + Specular Intensity

g ARM

Dirt Map

o

75

?’%’t“aﬂ' P v 1ot e N D s

R R

'i;égad“‘
vec3 dirt = aoFactor * light * DIRT.rgb;

float dirtFactor = min(dirtAmount * DIRT.a, 1.0);
color = mix(color, dirt, dirtFactor);

ARM

Textures in lceland Track

lceland Track: Memory Usage

= Total : 127 MB

= mipmaps not counted

= |3% of texture data is used for
alphas (16MB)

77

M Uncompressed
mRGB (ETCI)
& Split Alphas (ETCI)

ARM

lceland Track: Texture Repartition

= Things to take care of with ETCI split
alpha technique :

= More bandwidth usage ® Uncompressed

mETCI| RGB
X ETCI RGB + A

= One extra sampling operation in shaders:
More fragment instructions

Still better cache efficiency than
uncompressed, but not as good as ETC| RGB

s ARM

Total Texture Size on Disk

Texture data (MB)

= Total texture size in game package: | |65 MB
= |7.5% of package (205MB) is ETCI alphas data

Other
mETCI alphas

. ARM

80

RO

b *

=

4
.
>

Texture Compression

ARM

Texture Compression Formats

ETC — ARM® Mali™-400 GPU
" 4bpp
= RGB No alpha channel

ETC2 — ARM Mali-T604 GPU
" 4bpp

= Backward compatible
= RGB also handles alpha & punch through

ASTC — ARM Mali-T624 GPU and beyond
= 0.8bpp to 8bpp
= Supports RGB, RGB alpha, luminance, luminance alpha, normal maps
= Also supports HDR
= Also supports 3D textures

8l

ARM

ETC

= Khronos standard
= Most widely supported
= Doesn’t support alpha channels

If you need alpha, the ARM® Mali™
Texture Compression Tool has options
to store a separate alpha image

ARM

82

ETC 2

Extension of ETC
Less widely supported

More block modes

Alpha / punch through

Punch through tip:

= Use discard and sort
front to back

83

ARM

ASTC

84

Developed by ARM, now a
Khronos Standard

Variable bit rate 8bpp to 0.8bpp

ASTC is on the cutting edge so
only the most up to date
hardware supports it

This time next year ASTC will
be everywhere

General Tips

Quality setting is a time trade off

Iterate low quality, ship high quality
= Compress in the asset pipeline
= Familiarize artists with the tools

85

b dRq

]
|
_

ARM

Atlassing?

/N
=

-
e

ARM

Atlassing Compressed Textures

= The conventional wisdom is that compressed textures cannot be altered

= |f you change the content it has to be recompressed
= This isn’t entirely true

87

ARM

Atlassing Compressed Textures

88

Compressed textures are block based

Hardware decompression uses this
= Use coords to look up block
= Decompress block
= Use relevant pixels

Blocks are wholly independent

Textures with the same block size can
be stuck together

ARM

Atlassing Compressed Textures

= Combined textures must be in the same
format, with the same global settings
= Encoding
= Block size

= Quality settings can differ

= Purely an argument of the compression

= Textures must stitch at block
boundaries

89

2

ARM

malideveloper.arm.com Thank You

. . 7
community.arm.com Any questions!

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU
andlor elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

% The Architecture for the Digital World® ARM

