
1

Optimizing Mobile Games with Gameloft and ARM

Stacy Smith

Senior Software Engineer, ARM

Adrian Voinea

World Android Technical Lead, Gameloft

Victor Bernot

Lead Visual Effects Developer, Gameloft

2

 My first role in ARM was in Developer Relations

 Developers came to us to ask for help

 We couldn’t share their problems with the world

 We couldn’t help everyone on a one to one basis

ARM Ecosystem

3

 Developer Education addresses that need

 Since 2012 we’ve been sharing advice for graphical development

 Developers working with Developer Relations have remained separate

 Until now!

Developer Education

4

5

Today’s Agenda

 Gameloft

 Batching (Iron Man 3)

 Culling and LOD (Gangstar Vegas)

 Texture compression (Asphalt 8)

 ARM (That’s me)

 Entry level implementations

 How to achieve similar results

6

Iron Man 3

 Improving Draw Calls and Rendering Techniques

7

 There is no good or bad way to determine which sorting method works best for a

game

 Sorting methods reduce overdraw and material changes at the cost of CPU

 Sorting algorithms used for Iron Man 3:

 Sorting by material

 Sorting by distance

Sorting Objects Before Rendering

8

What Happens When No Sorting Is Applied?

 Mid-range device: average 18FPS, constant micro-freezes

 Over 35 program changes per frame

 The skybox is rendered in the 27th draw call / 150

9

Sorting Objects Before Rendering

 Every shader program change is costly

 It will depend a lot on the number of programs your game has

 Using a texture atlas will create the same materials, thus allowing better material sorting

 Sorting front to back will reduce the overdraw

10

Material Sorting Results

 Reduced program changes to an average of 16

 Micro-freezes are reduced.

 Average 22FPS, smoother

gameplay

11

Material Sorting Results

 But we still have a lot of overdraw…

12

Front to Back Sorting

 And this is the desired result…

13

Front to Back Sorting

 Sorting by distance

 Front to back sorting will reduce the overdraw, skipping fragment shader execution for all the

dropped fragments

 The transparent objects must be drawn back to front for a correct ordering. The blending is done

with what is already drawn in the color buffer

 For OpenGL® ES 3.0, avoid modifying the depth buffer from the fragment shader or you will not

benefit from the early Z testing, making the front to back sorting useless

14

Front to Back Sorting Results

 Sorting first by material, objects

with the same material then

sorted front to back

 Constant 24FPS

 The skybox is rendered in the

82nd draw call / 135, being the

last opaque object

15

Dynamic Batching

 Objects that are not static batched and by nature require dynamic movement can be

batched at runtime

 Objects need to share the same material to be batched into one single draw call

 Dynamic batched objects require new geometry and the duplication of all the vertex

attributes, adding a constraint on the number of vertices

16

Dynamic Batching

• Should be applied to dynamic

objects that share the same material,

with a constraint on number of

vertices, like particles

17

• In order for objects to be batchable at runtime:
 Objects need to use the same program

 Objects require identical textures

 Because of draw order constraint, objects require the same transparency property

 Because of duplicating vertex attributes, dynamic batching on objects requires a lower number

of vertices

Dynamic Batching

18

Sorting Objects Before Rendering

 Good approach to render your scene:

 Sort all opaque objects based on material and distance from camera

 This reduces scene overdraw

 Reducing material change will help a bit on FPS, depending on the hardware, but also helps with

micro-freezes

 For every consecutive draw call that has the same material, dynamic batching is simple and easy to

achieve

 Reduces the actual number of draw calls

 Reduced micro-freezes and gained ~6FPS by applying sorting algorithms

19

The Importance of Batching

20

 Deferred immediate mode rendering

 glDrawElements and glDrawArrays have an overhead

 Less draw calls, less overhead

 DrawCall class stitches multiple objects into one draw call

 Macro functions in shaders make batching as simple as:

vec4 pos=transform[getInstance()]*getPosition();

Batching

21

Batching

22

Batching

uniform mat4 transforms[4];

23

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]

Mesh 2 [(1,2),(0,2),(0,0)]

Mesh 3 [(2,2),(2,1),(1,1)]

Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Mixing up a Batch

24

Vertex shader:
uniform mat4 transforms[3];

attribute vec4 pos;

attribute float id;

void main(){

mat4 trans=transforms[(int)id];

glPosition=trans*pos;

}

GL Code:
float transforms[16*instanceCount];

.

. /* Load matrices into float array */

.

glUniformMatrix4fv(transID,4,false,transforms);

Serving up a Batch

25

 Multiple geometries drawn in a single draw call:

 drawbuilder.addGeometry(geo1);

 drawbuilder.addGeometry(geo2);

 drawbuilder.addGeometry(geo3);

 drawbuilder.Build();

 Always draws in the same order from a start and end index. Unused objects can be

scaled out to zero

 Can lead to inefficiency of vertex shaders

Scene Batching

26

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]

Mesh 2 [(1,2),(0,2),(0,0)]

Mesh 3 [(2,2),(2,1),(1,1)]

Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Remixing a Batch

27

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Index: [7,8,9,4,5,6,0,1,2,0,2,3]

Remixing a Batch

These IDs are the same

But now the draw order is different

28

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Index: [0,1,2,0,2,3,7,8,9]

Remixing a Batch

…But never get drawn

These vertices are still processed

29

Object Instancing

 Multiple geometries or single object instances:

for(int i=0;i<50;i++)

 drawbuilder.addGeometry(geo1);

drawbuilder.Build()

 Can implement LOD switching when objects are sorted front to back and correctly

culled

 So let’s talk about culling

30

Batching / Draw Call Reduction
Case Study: Gangstar Vegas

31

Challenges

 Big map: ~16 km²

 Move by foot / by car / by plane

 Interior/exterior environments

32

Streaming

 Constant streaming is needed :

 Meshes / LODs

 Streaming thread with second OpenGL® context

 Textures

 Same streaming thread as meshes

 Lower mipmap level always available

 Also streamed :

 Animations

 Sounds

 Physics data

33

Reducing Draw Call Count & Cost

 Draw calls are one of the major bottlenecks on mobiles

 On a very powerful device, stay under 300 draw calls

 On most devices => 100 to 200 at max

 Techniques used to reduce draw call count:

 Static batching

 2D grid culling

 Near/far city

 To reduce draw call cost:

 Index & Vertex Buffer Objects (IBO / VBO) for static geometry

34

2D Grid Culling

 Objects are linked to the cells of a grid
 A simple 2D grid is used:

 128x128 cells

 Cell size : 30m x 30m

 An object can belong to one or more cells

 Culling process:
 Get cells visible by camera’s frustum 2D projection on grid

 Middle cells: fully in frustum

 Border cells: partially in frustum

 Middle cell objects: directly added to render list

 Border cell objects: AABBoxes are tested vs camera frustum

 Grid is also used for streaming:
 Radius Add (175m) / Radius Safe (205m)

35

Frustum & Grid

36

Middle Cells

37

Border Cells

38

Objects will be drawn directly

39

AABOX culling => culled

Outside frustum => directly culled

40

AABOX culling => visible

41

Near/Far Cities

 Two different city meshes are used:

1. Near city:

 High resolution

 Streamed

2. Far city

 Low resolution

 Always available

42

Full city: 77 draw calls

43

Near City : 48 draw calls

44

Top view, near city slice

45

Near City Materials

 Atlasing of albedo textures (batching & memory)

 Lightmaps

 Complex shaders (e.g. specular / reflection)

46

Full City: 77 draw calls

47

Far City: 29 draw calls

48

Cities Depth Slices

 Each city version has its own « depth slice »

 Using glDepthRange

 Little overlapping zone between the two (20m).

glDepthRange(0.0, 0.08);
CamZnear = 0.2;
CamZFar = 160;
RenderHighresCity();

glDepthRange(0.08, 1);
CamZnear = 140;
CamZFar = 2000;
RenderLowresCity();

49

Top view: far city and full frustum

50

Far City Materials

 Heavy atlasing

 Premultiplied Lightmaps

 Low cost shaders

51

LODs and Culling

52

LOD in Batches

53

LOD in Batches

X

2

6

1 9

4 8

5

X

X

3

7

54

LOD in Batches

55

LOD in Batches

8

6

3

X 1

5 X

2

4

7

X

X

56

LOD in Batches

6

4

1

X X

3 X

X

2

5

X

X

57

LOD in Batches

1 4 7 2 5 8 3 6 9

1 2 3 4 5 6 7 8 9

58

LOD in Batches

X 1

X

2

X

X

3

4

5

6

7

8

59

LOD in Batches

1

X X

X

X

2

X

X

3

4

5

6

60

A View to a Cull

61

Scene Batching

Timbuktu has 22 objects per environment layer

S= Skipped R=Rendered X=Scaled out

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R R R R R R R

S S R R R X X X X X X R R X X X X X R X R S

< - - - - - - - - - - - - - - - - - >

S S R R R S S S S S S R R S S S S S R S R S

< - > < > <> <>

S S R R R S S S S S S R R S S S S S R X R S

< - > < > < - >

62

 Timbuktu's Foliage:

 4 types of alpha blended geometries, depth sorted

 Unpredictable interleaving of Grass, Tree, Bush and Shrub

 First suggestion:

 GTBSGTSBGTSBGTSBGTBSGTBSGTSBGTSBGTS

 No more than 3 dead models in a row

 Clumping of similar entities makes worst case more common

 Second suggestion:

 GGTTBBSSGGTTBBSSGGTTBBSSGGTTBBSS

 Allows consecutive pairs more cheaply

 Worst case still arises frequently, and is now even worse

Imposterable

63

 Solution:

 Foliage only varies in texture and scale

 All models topologically identical

 Zero skips

 Extra vec4 per instance

Imposterable

64

Asphalt 8
Effects, Draw Calls & Texture Data

65

 Explosive action racing
 Multiplayer

 Physics engine

 Main FXs :
 Realtime soft shadows

 Realtime reflections

 Paraboloid

 Road reflections

 Proxies

 Main post FXs:
 Motion blur

 Lens flare dirt

 Color grading

 Vigneting

The Game

66

Game Effects

67

 Culling adapted to a racing game :
 PVS (Potential Visibility Sets)

 AABBox culling

 Software occlusion culling

 LODs (distance or screen projection size)

 VBOs / IBOs for 95% of mesh data

 Physics on a separate thread

 Texture streaming to reduce loading times

 On a medium device (Samsung Galaxy SIII):
 120 to 250 draw calls, depending on track

Optimizations / Draw Call Reduction

68

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy SIII)

 300k vertices

 140 draw calls

 Not much overdraw

 Stop lights

 HUD

69

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy SIII)

• Post FXs disabled here

• Shaders covering large screen areas must be cheap :

• Road => 14 cycles (specular / normal map)
• Rocks => 7 cycles
• Sky => 1 cycle
• Cars => 18 cycles
• Lights/Smoke => 2/4 cycles

70

ETC1 and Alpha

 ~80% of the textures are ETC1 compressed

 We keep uncompressed :

◦ Splash / loading screens

◦ Cars & tracks illustrations

◦ Lens flare textures, LUTs…

 ~20% of the textures need alpha:

 Menus, HUD

 Billboards

 Specular maps …

71

Split Alpha on Android™

 Using two ETC1 compressed textures

 One for Alpha

 One for RGB

 ETC1 compression ratio: 4bpp (24bits)

 RGB: 6x

 RGBA: 3x

72

Billboards / HUD

Additive particles / lens flare textures do not need alpha !

73

Light Maps

Complete = DF * (LM + (LM * LM.a * brightBurn)) * overbright;

74

Road Specular Map

Alpha = AO + Specular Intensity

75

Dirt Map

vec3 dirt = aoFactor * light * DIRT.rgb;
float dirtFactor = min(dirtAmount * DIRT.a, 1.0);
color = mix(color, dirt, dirtFactor);

76

Textures in Iceland Track

77

 Total : 127 MB

 mipmaps not counted

 13% of texture data is used for

alphas (16MB)

Iceland Track: Memory Usage

12MB

 9%

99MB

 78%

16MB

13%

Uncompressed

RGB (ETC1)

Split Alphas (ETC1)

78

 Things to take care of with ETC1 split

alpha technique :

 More bandwidth usage

 One extra sampling operation in shaders:

 More fragment instructions

 Still better cache efficiency than

uncompressed, but not as good as ETC1 RGB

Iceland Track: Texture Repartition

5%

78%

17%

Uncompressed

ETC1 RGB

ETC1 RGB + A

79

Total Texture Size on Disk

 Total texture size in game package: 1165 MB

 17.5% of package (205MB) is ETC1 alphas data

960 MB

205 MB

Texture data (MB)

Other

ETC1 alphas

80

Texture Compression

81

 ETC – ARM® Mali™-400 GPU

 4bpp

 RGB No alpha channel

 ETC2 – ARM Mali-T604 GPU

 4bpp

 Backward compatible

 RGB also handles alpha & punch through

 ASTC – ARM Mali-T624 GPU and beyond

 0.8bpp to 8bpp

 Supports RGB, RGB alpha, luminance, luminance alpha, normal maps

 Also supports HDR

 Also supports 3D textures

Texture Compression Formats

82

ETC

 Khronos standard

 Most widely supported

 Doesn’t support alpha channels

 If you need alpha, the ARM® Mali™
Texture Compression Tool has options

to store a separate alpha image

83

ETC 2

 Extension of ETC

 Less widely supported

 More block modes

 Alpha / punch through

 Punch through tip:

 Use discard and sort

front to back

84

ASTC

 Developed by ARM, now a

Khronos Standard

 Variable bit rate 8bpp to 0.8bpp

 ASTC is on the cutting edge so

only the most up to date

hardware supports it

 This time next year ASTC will

be everywhere

85

General Tips

 Quality setting is a time trade off

 Iterate low quality, ship high quality

 Compress in the asset pipeline

 Familiarize artists with the tools

86

Atlassing?

87

 The conventional wisdom is that compressed textures cannot be altered

 If you change the content it has to be recompressed

 This isn’t entirely true

Atlassing Compressed Textures

88

Atlassing Compressed Textures

 Compressed textures are block based

 Hardware decompression uses this

 Use coords to look up block

 Decompress block

 Use relevant pixels

 Blocks are wholly independent

 Textures with the same block size can

be stuck together

89

Atlassing Compressed Textures

 Combined textures must be in the same

format, with the same global settings

 Encoding

 Block size

 Quality settings can differ

 Purely an argument of the compression

 Textures must stitch at block

boundaries

90

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any questions?

malideveloper.arm.com

community.arm.com

