
1

Optimizing Mobile Games with Gameloft and ARM

Stacy Smith

Senior Software Engineer, ARM

Adrian Voinea

World Android Technical Lead, Gameloft

Victor Bernot

Lead Visual Effects Developer, Gameloft

2

 My first role in ARM was in Developer Relations

 Developers came to us to ask for help

 We couldn’t share their problems with the world

 We couldn’t help everyone on a one to one basis

ARM Ecosystem

3

 Developer Education addresses that need

 Since 2012 we’ve been sharing advice for graphical development

 Developers working with Developer Relations have remained separate

 Until now!

Developer Education

4

5

Today’s Agenda

 Gameloft

 Batching (Iron Man 3)

 Culling and LOD (Gangstar Vegas)

 Texture compression (Asphalt 8)

 ARM (That’s me)

 Entry level implementations

 How to achieve similar results

6

Iron Man 3

 Improving Draw Calls and Rendering Techniques

7

 There is no good or bad way to determine which sorting method works best for a

game

 Sorting methods reduce overdraw and material changes at the cost of CPU

 Sorting algorithms used for Iron Man 3:

 Sorting by material

 Sorting by distance

Sorting Objects Before Rendering

8

What Happens When No Sorting Is Applied?

 Mid-range device: average 18FPS, constant micro-freezes

 Over 35 program changes per frame

 The skybox is rendered in the 27th draw call / 150

9

Sorting Objects Before Rendering

 Every shader program change is costly

 It will depend a lot on the number of programs your game has

 Using a texture atlas will create the same materials, thus allowing better material sorting

 Sorting front to back will reduce the overdraw

10

Material Sorting Results

 Reduced program changes to an average of 16

 Micro-freezes are reduced.

 Average 22FPS, smoother

gameplay

11

Material Sorting Results

 But we still have a lot of overdraw…

12

Front to Back Sorting

 And this is the desired result…

13

Front to Back Sorting

 Sorting by distance

 Front to back sorting will reduce the overdraw, skipping fragment shader execution for all the

dropped fragments

 The transparent objects must be drawn back to front for a correct ordering. The blending is done

with what is already drawn in the color buffer

 For OpenGL® ES 3.0, avoid modifying the depth buffer from the fragment shader or you will not

benefit from the early Z testing, making the front to back sorting useless

14

Front to Back Sorting Results

 Sorting first by material, objects

with the same material then

sorted front to back

 Constant 24FPS

 The skybox is rendered in the

82nd draw call / 135, being the

last opaque object

15

Dynamic Batching

 Objects that are not static batched and by nature require dynamic movement can be

batched at runtime

 Objects need to share the same material to be batched into one single draw call

 Dynamic batched objects require new geometry and the duplication of all the vertex

attributes, adding a constraint on the number of vertices

16

Dynamic Batching

• Should be applied to dynamic

objects that share the same material,

with a constraint on number of

vertices, like particles

17

• In order for objects to be batchable at runtime:
 Objects need to use the same program

 Objects require identical textures

 Because of draw order constraint, objects require the same transparency property

 Because of duplicating vertex attributes, dynamic batching on objects requires a lower number

of vertices

Dynamic Batching

18

Sorting Objects Before Rendering

 Good approach to render your scene:

 Sort all opaque objects based on material and distance from camera

 This reduces scene overdraw

 Reducing material change will help a bit on FPS, depending on the hardware, but also helps with

micro-freezes

 For every consecutive draw call that has the same material, dynamic batching is simple and easy to

achieve

 Reduces the actual number of draw calls

 Reduced micro-freezes and gained ~6FPS by applying sorting algorithms

19

The Importance of Batching

20

 Deferred immediate mode rendering

 glDrawElements and glDrawArrays have an overhead

 Less draw calls, less overhead

 DrawCall class stitches multiple objects into one draw call

 Macro functions in shaders make batching as simple as:

vec4 pos=transform[getInstance()]*getPosition();

Batching

21

Batching

22

Batching

uniform mat4 transforms[4];

23

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]

Mesh 2 [(1,2),(0,2),(0,0)]

Mesh 3 [(2,2),(2,1),(1,1)]

Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Mixing up a Batch

24

Vertex shader:
uniform mat4 transforms[3];

attribute vec4 pos;

attribute float id;

void main(){

mat4 trans=transforms[(int)id];

glPosition=trans*pos;

}

GL Code:
float transforms[16*instanceCount];

.

. /* Load matrices into float array */

.

glUniformMatrix4fv(transID,4,false,transforms);

Serving up a Batch

25

 Multiple geometries drawn in a single draw call:

 drawbuilder.addGeometry(geo1);

 drawbuilder.addGeometry(geo2);

 drawbuilder.addGeometry(geo3);

 drawbuilder.Build();

 Always draws in the same order from a start and end index. Unused objects can be

scaled out to zero

 Can lead to inefficiency of vertex shaders

Scene Batching

26

Mesh 1 [(1,1),(0,1),(0,0),(1,0)]

Mesh 2 [(1,2),(0,2),(0,0)]

Mesh 3 [(2,2),(2,1),(1,1)]

Index1: [0,1,2,0,2,3]

Index2: [0,1,2]

Index3: [0,1,2]

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Remixing a Batch

27

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Index: [7,8,9,4,5,6,0,1,2,0,2,3]

Remixing a Batch

These IDs are the same

But now the draw order is different

28

Attrib1:[(1,1),(0,1),(0,0),(1,1),(1,2),(0,0),(1,0),(2,2),(2,1),(1,1)]

Attrib2:[0,0,0,0,1,1,1,2,2,2]

Index: [0,1,2,0,2,3,4,5,6,7,8,9]

Index: [0,1,2,0,2,3,7,8,9]

Remixing a Batch

…But never get drawn

These vertices are still processed

29

Object Instancing

 Multiple geometries or single object instances:

for(int i=0;i<50;i++)

 drawbuilder.addGeometry(geo1);

drawbuilder.Build()

 Can implement LOD switching when objects are sorted front to back and correctly

culled

 So let’s talk about culling

30

Batching / Draw Call Reduction
Case Study: Gangstar Vegas

31

Challenges

 Big map: ~16 km²

 Move by foot / by car / by plane

 Interior/exterior environments

32

Streaming

 Constant streaming is needed :

 Meshes / LODs

 Streaming thread with second OpenGL® context

 Textures

 Same streaming thread as meshes

 Lower mipmap level always available

 Also streamed :

 Animations

 Sounds

 Physics data

33

Reducing Draw Call Count & Cost

 Draw calls are one of the major bottlenecks on mobiles

 On a very powerful device, stay under 300 draw calls

 On most devices => 100 to 200 at max

 Techniques used to reduce draw call count:

 Static batching

 2D grid culling

 Near/far city

 To reduce draw call cost:

 Index & Vertex Buffer Objects (IBO / VBO) for static geometry

34

2D Grid Culling

 Objects are linked to the cells of a grid
 A simple 2D grid is used:

 128x128 cells

 Cell size : 30m x 30m

 An object can belong to one or more cells

 Culling process:
 Get cells visible by camera’s frustum 2D projection on grid

 Middle cells: fully in frustum

 Border cells: partially in frustum

 Middle cell objects: directly added to render list

 Border cell objects: AABBoxes are tested vs camera frustum

 Grid is also used for streaming:
 Radius Add (175m) / Radius Safe (205m)

35

Frustum & Grid

36

Middle Cells

37

Border Cells

38

Objects will be drawn directly

39

AABOX culling => culled

Outside frustum => directly culled

40

AABOX culling => visible

41

Near/Far Cities

 Two different city meshes are used:

1. Near city:

 High resolution

 Streamed

2. Far city

 Low resolution

 Always available

42

Full city: 77 draw calls

43

Near City : 48 draw calls

44

Top view, near city slice

45

Near City Materials

 Atlasing of albedo textures (batching & memory)

 Lightmaps

 Complex shaders (e.g. specular / reflection)

46

Full City: 77 draw calls

47

Far City: 29 draw calls

48

Cities Depth Slices

 Each city version has its own « depth slice »

 Using glDepthRange

 Little overlapping zone between the two (20m).

glDepthRange(0.0, 0.08);
CamZnear = 0.2;
CamZFar = 160;
RenderHighresCity();

glDepthRange(0.08, 1);
CamZnear = 140;
CamZFar = 2000;
RenderLowresCity();

49

Top view: far city and full frustum

50

Far City Materials

 Heavy atlasing

 Premultiplied Lightmaps

 Low cost shaders

51

LODs and Culling

52

LOD in Batches

53

LOD in Batches

X

2

6

1 9

4 8

5

X

X

3

7

54

LOD in Batches

55

LOD in Batches

8

6

3

X 1

5 X

2

4

7

X

X

56

LOD in Batches

6

4

1

X X

3 X

X

2

5

X

X

57

LOD in Batches

1 4 7 2 5 8 3 6 9

1 2 3 4 5 6 7 8 9

58

LOD in Batches

X 1

X

2

X

X

3

4

5

6

7

8

59

LOD in Batches

1

X X

X

X

2

X

X

3

4

5

6

60

A View to a Cull

61

Scene Batching

Timbuktu has 22 objects per environment layer

S= Skipped R=Rendered X=Scaled out

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R R R R R R R

S S R R R X X X X X X R R X X X X X R X R S

< - - - - - - - - - - - - - - - - - >

S S R R R S S S S S S R R S S S S S R S R S

< - > < > <> <>

S S R R R S S S S S S R R S S S S S R X R S

< - > < > < - >

62

 Timbuktu's Foliage:

 4 types of alpha blended geometries, depth sorted

 Unpredictable interleaving of Grass, Tree, Bush and Shrub

 First suggestion:

 GTBSGTSBGTSBGTSBGTBSGTBSGTSBGTSBGTS

 No more than 3 dead models in a row

 Clumping of similar entities makes worst case more common

 Second suggestion:

 GGTTBBSSGGTTBBSSGGTTBBSSGGTTBBSS

 Allows consecutive pairs more cheaply

 Worst case still arises frequently, and is now even worse

Imposterable

63

 Solution:

 Foliage only varies in texture and scale

 All models topologically identical

 Zero skips

 Extra vec4 per instance

Imposterable

64

Asphalt 8
Effects, Draw Calls & Texture Data

65

 Explosive action racing
 Multiplayer

 Physics engine

 Main FXs :
 Realtime soft shadows

 Realtime reflections

 Paraboloid

 Road reflections

 Proxies

 Main post FXs:
 Motion blur

 Lens flare dirt

 Color grading

 Vigneting

The Game

66

Game Effects

67

 Culling adapted to a racing game :
 PVS (Potential Visibility Sets)

 AABBox culling

 Software occlusion culling

 LODs (distance or screen projection size)

 VBOs / IBOs for 95% of mesh data

 Physics on a separate thread

 Texture streaming to reduce loading times

 On a medium device (Samsung Galaxy SIII):
 120 to 250 draw calls, depending on track

Optimizations / Draw Call Reduction

68

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy SIII)

 300k vertices

 140 draw calls

 Not much overdraw

 Stop lights

 HUD

69

ARM® Mali™ Graphics Debugger (on a Samsung Galaxy SIII)

• Post FXs disabled here

• Shaders covering large screen areas must be cheap :

• Road => 14 cycles (specular / normal map)
• Rocks => 7 cycles
• Sky => 1 cycle
• Cars => 18 cycles
• Lights/Smoke => 2/4 cycles

70

ETC1 and Alpha

 ~80% of the textures are ETC1 compressed

 We keep uncompressed :

◦ Splash / loading screens

◦ Cars & tracks illustrations

◦ Lens flare textures, LUTs…

 ~20% of the textures need alpha:

 Menus, HUD

 Billboards

 Specular maps …

71

Split Alpha on Android™

 Using two ETC1 compressed textures

 One for Alpha

 One for RGB

 ETC1 compression ratio: 4bpp (24bits)

 RGB: 6x

 RGBA: 3x

72

Billboards / HUD

Additive particles / lens flare textures do not need alpha !

73

Light Maps

Complete = DF * (LM + (LM * LM.a * brightBurn)) * overbright;

74

Road Specular Map

Alpha = AO + Specular Intensity

75

Dirt Map

vec3 dirt = aoFactor * light * DIRT.rgb;
float dirtFactor = min(dirtAmount * DIRT.a, 1.0);
color = mix(color, dirt, dirtFactor);

76

Textures in Iceland Track

77

 Total : 127 MB

 mipmaps not counted

 13% of texture data is used for

alphas (16MB)

Iceland Track: Memory Usage

12MB

 9%

99MB

 78%

16MB

13%

Uncompressed

RGB (ETC1)

Split Alphas (ETC1)

78

 Things to take care of with ETC1 split

alpha technique :

 More bandwidth usage

 One extra sampling operation in shaders:

 More fragment instructions

 Still better cache efficiency than

uncompressed, but not as good as ETC1 RGB

Iceland Track: Texture Repartition

5%

78%

17%

Uncompressed

ETC1 RGB

ETC1 RGB + A

79

Total Texture Size on Disk

 Total texture size in game package: 1165 MB

 17.5% of package (205MB) is ETC1 alphas data

960 MB

205 MB

Texture data (MB)

Other

ETC1 alphas

80

Texture Compression

81

 ETC – ARM® Mali™-400 GPU

 4bpp

 RGB No alpha channel

 ETC2 – ARM Mali-T604 GPU

 4bpp

 Backward compatible

 RGB also handles alpha & punch through

 ASTC – ARM Mali-T624 GPU and beyond

 0.8bpp to 8bpp

 Supports RGB, RGB alpha, luminance, luminance alpha, normal maps

 Also supports HDR

 Also supports 3D textures

Texture Compression Formats

82

ETC

 Khronos standard

 Most widely supported

 Doesn’t support alpha channels

 If you need alpha, the ARM® Mali™
Texture Compression Tool has options

to store a separate alpha image

83

ETC 2

 Extension of ETC

 Less widely supported

 More block modes

 Alpha / punch through

 Punch through tip:

 Use discard and sort

front to back

84

ASTC

 Developed by ARM, now a

Khronos Standard

 Variable bit rate 8bpp to 0.8bpp

 ASTC is on the cutting edge so

only the most up to date

hardware supports it

 This time next year ASTC will

be everywhere

85

General Tips

 Quality setting is a time trade off

 Iterate low quality, ship high quality

 Compress in the asset pipeline

 Familiarize artists with the tools

86

Atlassing?

87

 The conventional wisdom is that compressed textures cannot be altered

 If you change the content it has to be recompressed

 This isn’t entirely true

Atlassing Compressed Textures

88

Atlassing Compressed Textures

 Compressed textures are block based

 Hardware decompression uses this

 Use coords to look up block

 Decompress block

 Use relevant pixels

 Blocks are wholly independent

 Textures with the same block size can

be stuck together

89

Atlassing Compressed Textures

 Combined textures must be in the same

format, with the same global settings

 Encoding

 Block size

 Quality settings can differ

 Purely an argument of the compression

 Textures must stitch at block

boundaries

90

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any questions?

malideveloper.arm.com

community.arm.com

