
Authoring Tools Framework

Open Source
Sony Computer Entertainment America

Agenda

 Who are you?
 What is ATF?
 Who uses ATF?
 Components of ATF
 Pros and Cons
 Lessons learned from shared code

development
 Q & A

Authoring Tools Framework

• Create PC-based game development tools
• C#, .NET 4.0
• You choose the components you want, customize

them, or add your own new ones
• Used by most Sony Computer Entertainment

1st-party studios
• Open source on GitHub!

http://github.com/SonyWWS

Presenter
Presentation Notes
ATF is a set of components, written in C#, for making game development tools on Windows. You choose the components you want to use, customize them, add in your own, and make your own Windows app.We’ve been around for a long time, since early 2006, and so we’ve been adopted by most Sony Computer Entertainment first-party studios, like Naughty Dog, and Guerrilla Games, and Santa Monica Studios, Quantic Dream, and many others.

Authoring Tools Framework

Presenter
Presentation Notes
We have a short three-and-a-half minute video that describes ATF and how it has been used. It shows a lot more content than I can fit in a live demo. After the video, we’ll show some screenshots of the tools that have been made using ATF and we’ll describe some of the components that are available.

Adopters
(Partial List)

 Naughty Dog – The Last of Us
 Charter Level editor
 Surfer Shader Editor

 Guerrilla Games – Killzone: Shadow Fall
 CoreText Editor – object and cinematic sequence editor

 Quantic Dream – Beyond: Two Souls
 Four StateMachine-based tools

 Santa Monica Studios – God of War
 Metrics – performance analyzer
 CreatureEditor – animation blending tool

 Bend Game Studio – Uncharted: Golden Abyss on PS Vita
 Level editor, etc.

 Zindagi
 StateMachine, SLED, LiveEdit

Presenter
Presentation Notes
Heavy Rain

 Cambridge Studio
 LittleBigPlanet PSP’s Level Editor and Moderation Viewer

 Home
 Home Scene Editor

 ATG
 Sulpha – sound visualization and editing
 Nexus – Animation blending tool

 TNT
 SLED – LUA IDE & debugger
 StateMachine editor
 SCREAM Tool – audio effects authoring tool

 Liverpool Studios
 LevelEditor, StateMachine, SLED

 Zipper Interactive
 Atlas – Level editor using ATF 3 and SlimDX

Adopters
(Partial list)

Naughty Dog’s Charter Level Editor

“There was ATF code running behind every shader tweak and enemy placement in
The Last of Us.” – Dave Smith, Naughty Dog tools programmer

Naughty Dog’s Surfer Shader Editor

Guerrilla’s CoreText Editor

Sequence and object editor for the Killzone series, including the
Killzone: Shadow Fall PS4 launch title

Santa Monica Studios’ Creature Editor

Presenter
Presentation Notes
An animation blending tool by John Butterfield and James Sweeney at Santa Monica Studios

LevelEditor (by Game Tech Group)

Metrics Viewer (by Game Tech Group)

Presenter
Presentation Notes
Written by TNT’s Game Tech Group for Santa Monica Studios

Scream Tool 7

LittleBigPlanet (PSP®) Level Editor

Presenter
Presentation Notes
By Cambridge Studio

SLED (by Game Tech Group)

State Machine (by Game Tech Group)

Alchemy

Presenter
Presentation Notes
NBA Team’s cinematic authoring tool

Main Components
• DOM (Document Object Model)

• XML and Schema files can be used, but are optional
• Control Host Service with docking

• WPF and WinForms
• Editor Infrastructure

• Commands
• Documents
• Transactions
• History
• Contexts
• Search & Replace

• Circuit, StateChart, Timeline with Direct2D
• Script editing with syntax highlighting
• Tree Control, Property Grid Editor, etc.
• Maya-like 3D Design View (OpenGL)

• ATGI and Collada model support

We do the boring stuff…

You pick the parts you want…

Open Sound Control

 Collaboration with Guerrilla Games
 Open standard, high-level network protocol
 Successor to MIDI
 Sends and receives name / value pairs
 Lemur ($50) for iPad works great
 TouchOSC for Android tablets works well, too
 Non-programmer can create GUI and tools

Open Sound Control
TouchOSC for Android

Lemur for iOS
+ scripting
+ more controls
+ editing on iPad

Open Sound Control at Guerrilla Games

DOM (Document Object Model)

 In-memory observable XML-like database
 DomNode trees
 Root of a DomNode tree is typically a document

 DomNodes have attributes and children
 Specified by a DomNodeType (like a schema type)
 Attributes, like in XML, are simple types (int, float, string,

reference) or arrays of simple types.
 DomNodes are observable
 Child Added event
 Child Removed event
 Attribute Changed event

Presenter
Presentation Notes
Enables undo/redo, cut/copy/paste, document persistence

- Each DomNode has certain attributes and children,
specified by the DomNode’s DomNodeType
- DomNodeTypes can be created programmatically or by loading schema file
- Events propagate from children to parents

Circuit Document
Root

Circuit
Group

Circuit
Element

Circuit
Element

Circuit
Group

Circuit
Element

DomNode Hierarchy

Adaptability
 IAdaptable
 Implemented by DomNode and DomNodeAdapter

 As<T> extension method on object
 First does C# ‘as’, then checks for IAdaptable

DomNodeAdapters
Clients’ “business classes” derive from DomNodeAdapter and are defined

for particular DomNodeTypes. A DomNode is created first and then its
DomNodeAdapters are created automatically but are initialized on
demand. Call InitializeExtensions on root DomNode to initialize all

DomNodeAdapters for the whole tree.

Root DomNode

Circuit
Group
DomNode

Circuit
Element
DomNode

Circuit
Element
DomNode

Circuit
Group
DomNode

Circuit
Element
DomNode

SelectionContext

HistoryContext

class
CircuitGroup

class
CircuitElement

CircuitDocument

Contexts
Typically one of each per document

 SelectionContext
 Tracks user’s selection and has change events

 HistoryContext
 Tracks DOM changes to sub-tree for undo/redo

 TransactionContext
 Base class of HistoryContext. Tracks when a set of changes

begins and finishes, so that validation logic can be executed
at correct time.

 InstancingContext
 Implements copy, paste, and delete

Registries
One of each of per app

 DocumentRegistry – tracks documents
 List of open documents
 Adds and removes documents
 Active document

 ContextRegistry – tracks contexts
 List of available “contexts”
 Adds and removes contexts
 Active context

 IControlRegistry, IControlHostService
 Clients register Controls, so that they appear in docking

framework. Active Control is tracked.

Services
One of each per app. Provides functionality to other components.

 ControlHostService
 Docking framework

 CommandService
 Menus and toolbars

 SettingsService
 User and app settings GUI and persistence

 PerforceService
 SkinningService
 Etc.

Editors
One of each per app; work with active context

 PropertyEditor
 2-column property editor with names and values

 GridPropertyEditor
 Spreadsheet-style multi-object property editor

 TimelineEditor
 CircuitEditor
 CurveEditor
 Etc.

ATF Pros and Cons

 Pros
 Easy to create editing tools with all of the standard

features -- copy & paste, undo & redo, windows docking,
user settings, document persistence (if using XML files),
etc.

 Powerful components for specific tasks
 Circuit editing
 Timeline editing
 Property editing
 Direct2D wrappers

ATF Pros and Cons

 Cons
 Connections between components are usually abstract

and use C# interfaces and Adaptability. It can be difficult
to know which components are working with each other.
Tip: use debugger.

 Steep learning curve. We’ve tried to address this with
well-written and thorough docs.

 The DOM is difficult to debug. Use DomNodeAdapters,
DOM Recorder, and DOM Explorer.

Tip

 “Features are an asset. Code is a liability.” –
Bill Budge

Presenter
Presentation Notes
Code has maintenance costsCode has “brain costs” / understanding / learning curvesWrap existing libraries where possible

Tip

 Creating shared code is 2x to 3x slower.
 Avoiding breaking changes
 Difficult to know how clients are using your code

Presenter
Presentation Notes
Code has maintenance costsCode has “brain costs” / understanding / learning curvesWrap existing libraries where possible“The curse of having clients”

Tip

 Clients want to customize everything!
 Expect to need to make class members public or

protected.
 If you’re unsure, keep it private and then make it

public upon request.

Tip

 Code Reviews?
 Always: for new C# interfaces
 Always: for significant new features
 “It Depends”: for more minor changes

Tip

 Have written coding standards
 For C#, see “Framework Design Guidelines” on

MSDN

Tip

 Build “orthogonally”.
 Try to have minimal well-defined dependencies on

other classes.
 Program against interfaces instead of concrete

classes where possible.

Tip

 Leave yourself a backdoor with the ‘info’ object

public interface IDocumentClient
{
 DocumentClientInfo Info
 {
 get;
 }
…

Tip

 Prefer IEnumerable<T> over IList<T> in APIs
 Never use List<T>

Tip

 When developing a large new piece of tech,
try to find a client to work with.
 This validates your approach.
 When finished, you’ll have at least one client.

Tip

 Write the release note for a breaking change,
before making the breaking change.
 What is this breaking change?
 Why is this breaking change necessary?
 How do clients fix their code?

Tip

 Make C# interfaces be as small as possible.
 If it has > 6 completely different kinds of

members, that’s a code smell
 Use extension methods to provide utility

methods.

Tip

 Visit clients once or twice a year for a “road
show”.
 Show off your latest work.
 See what they’re up to.
 Get ideas for future projects.
 Spread knowledge between clients.

Resources

• Full Featured Examples
• Circuit Editor
• Statechart Editor
• Timeline Editor
• Using Direct2D
• Model Viewer
• …

• Massive wiki documentation
• Issue tracker
• Responsive staff

github.com/SonyWWS

Questions? Thank you!

Presenter
Presentation Notes
Thank you!

	Authoring Tools Framework
	Agenda
	Authoring Tools Framework
	Authoring Tools Framework
	Adopters�(Partial List)
	Adopters�(Partial list)
	Naughty Dog’s Charter Level Editor
	Naughty Dog’s Surfer Shader Editor
	Guerrilla’s CoreText Editor
	Santa Monica Studios’ Creature Editor
	LevelEditor (by Game Tech Group)
	Metrics Viewer (by Game Tech Group)
	Scream Tool 7
	LittleBigPlanet (PSP®) Level Editor
	SLED (by Game Tech Group)
	State Machine (by Game Tech Group)
	Alchemy
	Main Components
	We do the boring stuff…
	You pick the parts you want…
	Open Sound Control
	Open Sound Control
	Open Sound Control at Guerrilla Games
	DOM (Document Object Model)
	- Each DomNode has certain attributes and children,�specified by the DomNode’s DomNodeType�- DomNodeTypes can be created programmatically or by loading schema file�- Events propagate from children to parents
	Adaptability
	DomNodeAdapters�Clients’ “business classes” derive from DomNodeAdapter and are defined for particular DomNodeTypes. A DomNode is created first and then its DomNodeAdapters are created automatically but are initialized on demand. Call InitializeExtensions on root DomNode to initialize all DomNodeAdapters for the whole tree.�
	Contexts�Typically one of each per document
	Registries�One of each of per app
	Services�One of each per app. Provides functionality to other components.
	Editors�One of each per app; work with active context
	ATF Pros and Cons
	ATF Pros and Cons
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Resources
	github.com/SonyWWS

