
Authoring Tools Framework

Open Source
Sony Computer Entertainment America

Agenda

 Who are you?
 What is ATF?
 Who uses ATF?
 Components of ATF
 Pros and Cons
 Lessons learned from shared code

development
 Q & A

Authoring Tools Framework

• Create PC-based game development tools
• C#, .NET 4.0
• You choose the components you want, customize

them, or add your own new ones
• Used by most Sony Computer Entertainment

1st-party studios
• Open source on GitHub!

http://github.com/SonyWWS

Presenter
Presentation Notes
ATF is a set of components, written in C#, for making game development tools on Windows. You choose the components you want to use, customize them, add in your own, and make your own Windows app.
We’ve been around for a long time, since early 2006, and so we’ve been adopted by most Sony Computer Entertainment first-party studios, like Naughty Dog, and Guerrilla Games, and Santa Monica Studios, Quantic Dream, and many others.

Authoring Tools Framework

Presenter
Presentation Notes
We have a short three-and-a-half minute video that describes ATF and how it has been used. It shows a lot more content than I can fit in a live demo. After the video, we’ll show some screenshots of the tools that have been made using ATF and we’ll describe some of the components that are available.

Adopters
(Partial List)

 Naughty Dog – The Last of Us
 Charter Level editor
 Surfer Shader Editor

 Guerrilla Games – Killzone: Shadow Fall
 CoreText Editor – object and cinematic sequence editor

 Quantic Dream – Beyond: Two Souls
 Four StateMachine-based tools

 Santa Monica Studios – God of War
 Metrics – performance analyzer
 CreatureEditor – animation blending tool

 Bend Game Studio – Uncharted: Golden Abyss on PS Vita
 Level editor, etc.

 Zindagi
 StateMachine, SLED, LiveEdit

Presenter
Presentation Notes
Heavy Rain

 Cambridge Studio
 LittleBigPlanet PSP’s Level Editor and Moderation Viewer

 Home
 Home Scene Editor

 ATG
 Sulpha – sound visualization and editing
 Nexus – Animation blending tool

 TNT
 SLED – LUA IDE & debugger
 StateMachine editor
 SCREAM Tool – audio effects authoring tool

 Liverpool Studios
 LevelEditor, StateMachine, SLED

 Zipper Interactive
 Atlas – Level editor using ATF 3 and SlimDX

Adopters
(Partial list)

Naughty Dog’s Charter Level Editor

“There was ATF code running behind every shader tweak and enemy placement in
The Last of Us.” – Dave Smith, Naughty Dog tools programmer

Naughty Dog’s Surfer Shader Editor

Guerrilla’s CoreText Editor

Sequence and object editor for the Killzone series, including the
Killzone: Shadow Fall PS4 launch title

Santa Monica Studios’ Creature Editor

Presenter
Presentation Notes
An animation blending tool by John Butterfield and James Sweeney at Santa Monica Studios

LevelEditor (by Game Tech Group)

Metrics Viewer (by Game Tech Group)

Presenter
Presentation Notes
Written by TNT’s Game Tech Group for Santa Monica Studios

Scream Tool 7

LittleBigPlanet (PSP®) Level Editor

Presenter
Presentation Notes
By Cambridge Studio

SLED (by Game Tech Group)

State Machine (by Game Tech Group)

Alchemy

Presenter
Presentation Notes
NBA Team’s cinematic authoring tool

Main Components
• DOM (Document Object Model)

• XML and Schema files can be used, but are optional
• Control Host Service with docking

• WPF and WinForms
• Editor Infrastructure

• Commands
• Documents
• Transactions
• History
• Contexts
• Search & Replace

• Circuit, StateChart, Timeline with Direct2D
• Script editing with syntax highlighting
• Tree Control, Property Grid Editor, etc.
• Maya-like 3D Design View (OpenGL)

• ATGI and Collada model support

We do the boring stuff…

You pick the parts you want…

Open Sound Control

 Collaboration with Guerrilla Games
 Open standard, high-level network protocol
 Successor to MIDI
 Sends and receives name / value pairs
 Lemur ($50) for iPad works great
 TouchOSC for Android tablets works well, too
 Non-programmer can create GUI and tools

Open Sound Control
TouchOSC for Android

Lemur for iOS
+ scripting
+ more controls
+ editing on iPad

Open Sound Control at Guerrilla Games

DOM (Document Object Model)

 In-memory observable XML-like database
 DomNode trees
 Root of a DomNode tree is typically a document

 DomNodes have attributes and children
 Specified by a DomNodeType (like a schema type)
 Attributes, like in XML, are simple types (int, float, string,

reference) or arrays of simple types.
 DomNodes are observable
 Child Added event
 Child Removed event
 Attribute Changed event

Presenter
Presentation Notes
Enables undo/redo, cut/copy/paste, document persistence

- Each DomNode has certain attributes and children,
specified by the DomNode’s DomNodeType
- DomNodeTypes can be created programmatically or by loading schema file
- Events propagate from children to parents

Circuit Document
Root

Circuit
Group

Circuit
Element

Circuit
Element

Circuit
Group

Circuit
Element

DomNode Hierarchy

Adaptability
 IAdaptable
 Implemented by DomNode and DomNodeAdapter

 As<T> extension method on object
 First does C# ‘as’, then checks for IAdaptable

DomNodeAdapters
Clients’ “business classes” derive from DomNodeAdapter and are defined

for particular DomNodeTypes. A DomNode is created first and then its
DomNodeAdapters are created automatically but are initialized on
demand. Call InitializeExtensions on root DomNode to initialize all

DomNodeAdapters for the whole tree.

Root DomNode

Circuit
Group
DomNode

Circuit
Element
DomNode

Circuit
Element
DomNode

Circuit
Group
DomNode

Circuit
Element
DomNode

SelectionContext

HistoryContext

class
CircuitGroup

class
CircuitElement

CircuitDocument

Contexts
Typically one of each per document

 SelectionContext
 Tracks user’s selection and has change events

 HistoryContext
 Tracks DOM changes to sub-tree for undo/redo

 TransactionContext
 Base class of HistoryContext. Tracks when a set of changes

begins and finishes, so that validation logic can be executed
at correct time.

 InstancingContext
 Implements copy, paste, and delete

Registries
One of each of per app

 DocumentRegistry – tracks documents
 List of open documents
 Adds and removes documents
 Active document

 ContextRegistry – tracks contexts
 List of available “contexts”
 Adds and removes contexts
 Active context

 IControlRegistry, IControlHostService
 Clients register Controls, so that they appear in docking

framework. Active Control is tracked.

Services
One of each per app. Provides functionality to other components.

 ControlHostService
 Docking framework

 CommandService
 Menus and toolbars

 SettingsService
 User and app settings GUI and persistence

 PerforceService
 SkinningService
 Etc.

Editors
One of each per app; work with active context

 PropertyEditor
 2-column property editor with names and values

 GridPropertyEditor
 Spreadsheet-style multi-object property editor

 TimelineEditor
 CircuitEditor
 CurveEditor
 Etc.

ATF Pros and Cons

 Pros
 Easy to create editing tools with all of the standard

features -- copy & paste, undo & redo, windows docking,
user settings, document persistence (if using XML files),
etc.

 Powerful components for specific tasks
 Circuit editing
 Timeline editing
 Property editing
 Direct2D wrappers

ATF Pros and Cons

 Cons
 Connections between components are usually abstract

and use C# interfaces and Adaptability. It can be difficult
to know which components are working with each other.
Tip: use debugger.

 Steep learning curve. We’ve tried to address this with
well-written and thorough docs.

 The DOM is difficult to debug. Use DomNodeAdapters,
DOM Recorder, and DOM Explorer.

Tip

 “Features are an asset. Code is a liability.” –
Bill Budge

Presenter
Presentation Notes
Code has maintenance costs
Code has “brain costs” / understanding / learning curves
Wrap existing libraries where possible

Tip

 Creating shared code is 2x to 3x slower.
 Avoiding breaking changes
 Difficult to know how clients are using your code

Presenter
Presentation Notes
Code has maintenance costs
Code has “brain costs” / understanding / learning curves
Wrap existing libraries where possible
“The curse of having clients”

Tip

 Clients want to customize everything!
 Expect to need to make class members public or

protected.
 If you’re unsure, keep it private and then make it

public upon request.

Tip

 Code Reviews?
 Always: for new C# interfaces
 Always: for significant new features
 “It Depends”: for more minor changes

Tip

 Have written coding standards
 For C#, see “Framework Design Guidelines” on

MSDN

Tip

 Build “orthogonally”.
 Try to have minimal well-defined dependencies on

other classes.
 Program against interfaces instead of concrete

classes where possible.

Tip

 Leave yourself a backdoor with the ‘info’ object

public interface IDocumentClient
{
 DocumentClientInfo Info
 {
 get;
 }
…

Tip

 Prefer IEnumerable<T> over IList<T> in APIs
 Never use List<T>

Tip

 When developing a large new piece of tech,
try to find a client to work with.
 This validates your approach.
 When finished, you’ll have at least one client.

Tip

 Write the release note for a breaking change,
before making the breaking change.
 What is this breaking change?
 Why is this breaking change necessary?
 How do clients fix their code?

Tip

 Make C# interfaces be as small as possible.
 If it has > 6 completely different kinds of

members, that’s a code smell
 Use extension methods to provide utility

methods.

Tip

 Visit clients once or twice a year for a “road
show”.
 Show off your latest work.
 See what they’re up to.
 Get ideas for future projects.
 Spread knowledge between clients.

Resources

• Full Featured Examples
• Circuit Editor
• Statechart Editor
• Timeline Editor
• Using Direct2D
• Model Viewer
• …

• Massive wiki documentation
• Issue tracker
• Responsive staff 

github.com/SonyWWS

Questions? Thank you!

Presenter
Presentation Notes
Thank you!

	Authoring Tools Framework
	Agenda
	Authoring Tools Framework
	Authoring Tools Framework
	Adopters�(Partial List)
	Adopters�(Partial list)
	Naughty Dog’s Charter Level Editor
	Naughty Dog’s Surfer Shader Editor
	Guerrilla’s CoreText Editor
	Santa Monica Studios’ Creature Editor
	LevelEditor (by Game Tech Group)
	Metrics Viewer (by Game Tech Group)
	Scream Tool 7
	LittleBigPlanet (PSP®) Level Editor
	SLED (by Game Tech Group)
	State Machine (by Game Tech Group)
	Alchemy
	Main Components
	We do the boring stuff…
	You pick the parts you want…
	Open Sound Control
	Open Sound Control
	Open Sound Control at Guerrilla Games
	DOM (Document Object Model)
	- Each DomNode has certain attributes and children,�specified by the DomNode’s DomNodeType�- DomNodeTypes can be created programmatically or by loading schema file�- Events propagate from children to parents
	Adaptability
	DomNodeAdapters�Clients’ “business classes” derive from DomNodeAdapter and are defined for particular DomNodeTypes. A DomNode is created first and then its DomNodeAdapters are created automatically but are initialized on demand. Call InitializeExtensions on root DomNode to initialize all DomNodeAdapters for the whole tree.�
	Contexts�Typically one of each per document
	Registries�One of each of per app
	Services�One of each per app. Provides functionality to other components.
	Editors�One of each per app; work with active context
	ATF Pros and Cons
	ATF Pros and Cons
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Tip
	Resources
	github.com/SonyWWS

