

About Our Project

• Brand-new IP

• Alternate history
19th-century London

• PS4 Exclusive

• ~100 developers

About Our Project

• Work began in early 2011

• Originally just 2 graphics
programmers

– Now we have 5!

Engine Overview

• Latest version of our in-house engine

• Windows(DX11) and PS4, but heavily geared
towards PS4

– Fine-grained task scheduling

– Low-overhead, multithreaded cmd buffer generation

– PS4 Secret Sauce™

• Physically based rendering from the start

Engine Overview

• Core tools framework uses C++ and Qt

– Built on common UI core

– Can be embedded in Maya

• Custom build pipeline built in C++

– Major engineering effort

– Heavily multithreaded

– Processed assets cached on local servers

Engine Overview

• Renderer embedded in Maya

– Uses DX11 Viewport 2.0 override (Maya 2014)

– Render using their device instead of our own

– Tell Maya which UI to draw

• Materials/particles/lens flares/etc. can be live
edited inside of Maya

• Serves as primary level editor

Memory

• 2 GB texture budget

• 128 MiB sound budget

• 700 MiB level geometry

• 600 MiB character textures

• 250 MiB global textures (FX, UI, light maps, etc..)

– Even characters have lightmap data

• 700 MiB animation

Memory

• Environmental art is mapped at 512 pixels per unit

• Standard environment tilling texture is 1024x1024

Lighting Pipeline

• Tiled forward lighting (AKA Forward+)
– Depth prepass

– CS bins lights per tile

– Two depth partitions

– Punctual light sources
(no area lights…yet!)

Lighting Pipeline

• Transparents fully lit with diffuse + specular

– Separate depth prepass + depth buffer for transparents

– Transparent light list generated per-tile

• TileMinDepth = TileMin(transparentDepth)

• TileMaxDepth = TileMax(opaqueDepth)

– Also support per-vertex lighting for particles

Lighting Pipeline

• Lightmaps for static geo

– Baked on GPU farm using Optix

– H-basis for directional variation

• SH probes for dynamics

– 3rd-order (9 coefficients)

• Pre-convolved specular probes

– Cubemaps rendered in-engine,
convolved in a compute shader

Lighting Pipeline

Lighting Pipeline

Lighting Pipeline

Lighting Pipeline

Lighting Pipeline

Ambient Occlusion

• Directional AO maps (H-basis) baked for characters
and static geo

• Static geo only uses it to occlude specular from
probes

• Dynamic geo applies AO to diffuse from SH probes

Without Reflection Occlusion

With Reflection Occlusion

Reflection Occlusion Visualization

Ambient Occlusion

• Dynamic AO from capsules skinned to characters

AO Capsules Off

AO Capsules On

Core Shading Model

• Default specular BRDF is Cook-Torrance

– D term is GGX distribution from Walter et al.

– Matching Smith G term derived in same paper

– Schlick’s approximation for Fresnel

– Lambertian diffuse, balanced with specular intensity

Core Shading Model

• GGX + Cook Torrance == Lots of math

– But we have lots of ALU!

• Can be optimized

– Don’t use trig

– Fold Smith G term into denominator

– See our course notes from SIGGRAPH

• Have artists work with sqrt(roughness)

– More intuitive, better for blending

// Helper for computing the GGX visibility term

float GGX_V1(in float m2, in float nDotX) {

return 1.0f / (nDotX + sqrt(m2 + (1 - m2) * nDotX * nDotX));

}

// Computes the specular term using a GGX microfacet distribution. m is roughness, n is the surface normal, h is the

// half vector, and l is the direction to the light source

float GGX_Specular(in float m, in float3 n, in float3 h, in float3 v, in float3 l) {

float nDotH = saturate(dot(n, h));

float nDotL = saturate(dot(n, l));

float nDotV = saturate(dot(n, v));

float nDotH2 = nDotH * nDotH;

float m2 = m * m;

// Calculate the distribution term

float d = m2 / (Pi * pow(nDotH * nDotH * (m2 - 1) + 1, 2.0f));

// Calculate the matching visibility term

float v1i = GGX_V1(m2, nDotL);

float v1o = GGX_V1(m2, nDotV);

float vis = v1i * v1o;

// Multiply this result with the Fresnel term

return d * vis;

}

Core Shading Model

• Other BRDFs available

– Beckmann (also taken from Walter et al.)

– Anisotropic GGX

– Hair (Kajiya-Kay)

– Skin (pre-integrated diffuse)

– Cloth

Skin

• Our most expensive shader!

– Texture lookup per light based on N dot L

– Multiple specular lobes

• Didn’t use shader gradient-based curvature

– Too many artifacts

– Used curvature maps instead

Skin

Pre-integrated skin diffuse with SH

Ambient Skin (Diffuse only)

Left is using normal SH lighting convolved with cosine kernel

Right is using SH lighting convolved with the scattering kernel

Hair Shading

• Not physically-based 

• Kajiya-Kay
– Haven’t had time to investigate

real-time Marschner

• Tweaked Fresnel curve

• SH diffuse using tangent
direction
– Analytic Tangent Irradiance

Environment Maps for Anisotropic Surfaces[Mehta 2012]

Hair Shading

• Secondary specular lobe

– Shifted along tangent towards tips

– Takes albedo color

Hair Shading

• Shift maps to break up highlights

– Additional shift along tangent direction

Hair Shading

• Flow maps to define tangent direction

– Authored in Mari

Cloth Shading

Observations from photo reference:

• Soft specular lobe with large smooth
falloffs

• Fuzz on the rim from asperity
scattering

• Low specular contribution at front
facing angles

• Some fabrics have two toned
specular colors

Cloth Shading

• Inverted Gaussian for asperity
scattering

• Translation from origin to give
more specular at front facing
angles

• No geometry term

Specular Aliasing

=+

Specular Aliasing

• Modify roughness maps to reduce aliasing

• Using technique based on “Frequency Domain
Normal Map Filtering” by Han et al.

Specular Aliasing

• Represent NDF as spherical Gaussian (vMF distribution)

• Approximate BRDF in SH as a Gaussian

• Convolution of two Gaussians is a new Gaussian

• Use relationship to compute new roughness

BRDF NDF

New Roughness

No AA Ours Ground Truth

Scanning

Scanning

Scanning

Material Pipeline

Material Pipeline

• Materials = text assets

• Uses our custom data language (radattr)

• Language supports:

– Types

– Inheritance

– UI layouts

– Metadata

:bumpy_material := (opaquematerial

:enable_diffuse_ = true

:enable_specular_ = true

:specular_map = (:name = "bumpy_material_spc")

:normal_map = (:name = "bumpy_material_nml")

:specular_intensity = 0.05

:specular_roughness = 0.1

)

:bumpy_material_red := (bumpymaterial

:albedo_tint_color = (Color

:r = 1.0

:g = 0.0

:b = 0.0

)

)

Material Pipeline

• Material authoring is feature-based

– No shader trees

• Material editor tool for real-time editing

– Can also be hosted inside of Maya

Material Pipeline

Material Pipeline

• radattr inheritance used to make templates

• Common parameters shared in base material

• Derived material only stores changes from base

• Quicker asset creation

• Global changes can be made in a single asset

Shaders

• Hand-written ubershaders

– Lots of #if’s

• Major material features = macro definitions

• Parameters (spec intensity, roughness, etc.) hard-
coded into the shader, except when animated or
composited

• Some code is auto-generated to handle textures
and animated parameters

Shaders

• Pre-defined “permutations”

– Permutation = macro definition + entry point

• Permutations for skinning, blend shapes,
instancing, light maps, etc.

• Debug permutation for visualization/debugging

• Shaders compiled in build pipeline based on
permutation + material

Shaders
Material

Asset

Built
Material

Build
Material

Processed
Shader Code

Level Asset Build Level

Compile
Shader Set

Built Level

Built
Shader Set

Shader
Set

Shader
Code

Shaders

• Pros:
– Shaders are optimized for a material

• Optimizer has full access

– No runtime compiling for the game itself (used by tools)

• Cons:
– Lots of shaders to compile!

• We cache everything, but iteration can be slow

– Monolithic shaders are hard to debug

– Lean heavily on the compiler

Material Compositing

• Mostly offline process

• Material asset specifies composite “stack”

• Each layer in the stack has:
– Referenced material

– Blend mask

– Blending parameters

• Recursively build + composite referenced materials

• Combine each layer 1 by 1 using pixel shader

Material Compositing

• Generates parameter maps from materials and
blending maps

• Support compositing subset of BRDFs

– Cloth, GGX, and Anisotropic

– Compositing cloth requires applying 2 BRDFs

Material Compositing

Map R Channel G Channel B Channel A Channel Format

1 Normals X Normals Y N/A N/A BC5

2 Diffuse R Diffuse G Diffuse B Alpha
(Optional)

BC1 or BC3

3 Specular R Specular G Specular B Specular
Intensity

BC3

4 Roughness AO BRDF Blend Anisotropy BC3

Material Compositing
// Compositing pixel shader run on a quad covering the entire output texture

CompositeOutput CompositePS(in float2 UV : UV) {

CompositeOutput output;

float blendAmt = BlendScale * BlendMap.Sample(Sampler, UV);

float4 diffuseA = DiffuseTintA * DiffuseMapA.Sample(Sampler, UV);

float4 diffuseB = DiffuseTintB * DiffuseMapB.Sample(Sampler, UV);

float diffuseBlendAmt = blendAmt * DiffuseContribution;

output.Diffuse = Blend(diffuseA, diffuseB, diffuseBlendAmt,

DiffuseBlendMode);

// Do the same for specular, normals, AO, etc.

return output;

}

Material Layers

• Up to 4 layers

– Derived from base materials

– Separate compositing chain
per layer

– Driven by vertex colors

Material Layers

Material Layers

Material Layers

Material Layers
LayerParams combinedParams;

[unroll]

for(uint i = 0; i < NumLayers; ++i) {

// Build all layer params from textures and hard-coded

// material parameters

LayerParams layerParams = GetLayerParams(i, MatParams, Textures);

// Blend with the previous layer using vertex data and blend masks

combinedParams = BlendLayer(combinedParams, layerParams, vtxData,

BlendMode, Textures);

}

// Calculate all lighting using the blended params

return ComputeLighting(combinedParams);

Garret Foster
garret@readyatdawn.com

Questions?

