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Agenda 

 Motivations 

 Deformable Snow 

● Novel technique for 
rendering of surfaces 
covered with fallen 
deformable snow 

● For consoles and 
enhanced for PC  
(DX11 tessellation) 

 Q&A 







Motivations 

Enhance the world with  
dynamics of deformable snow 

Three requirements:  
1. Iconic visuals of deformable snow 

2. Organic deformation from walking,  
falling, sliding, fighting and more 

3. Low memory usage and low performance cost for 
an open world game 



Iconic / Organic Deformable Snow 

From Google Images - http://bit.ly/M7T9kV (footsteps in snow, left) and http://bit.ly/M7TbJB (snow angel, right) 

http://bit.ly/M7T9kV
http://bit.ly/M7TbJB


Previous Work? 

[St-Amour 2013] (Assassin’s Creed 3) 
[Edwards 2012] (Journey) 

 Raycast on a terrain / Modify terrain mesh. 
- We don’t have terrain. We have rooftops and streets. 

- Besides, we don’t want to add raycasts. 

 Requires variable triangle density for visually 
convincing vertex displacement in all cases 

- PC DX11 with tessellation is great… but what about consoles? 
 



Our Approach (1/) 

 Generate displacement heightmaps at runtime  

● Snow prints are a semi-low frequency detail effect 

● Cheap approximation works with footsteps & more 

● Great performance, and low memory usage 

 Consoles: virtual displacement via Relief Mapping 

● Minimal taps. No “swimming” 

● Independent of triangle density 

 PC: DirectX 11 version with tessellation 



Our Approach (2/) 

 Gotham has many rooftops and streets 

 Dynamically alloc/dealloc heightmaps based on 
size, player/AIs and visibility 

Heightmaps 
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 Render snow-affecting objects 
looking from under the surface  
using an ankle-high orthogonal  
frustum  

1. Clear to black 

2. Render actors in white 

3. Filter and accumulate (ping/pong) in a texture 

 Anything in that zone will affect the heightmap 
(feet, hands, sliding, throwing a thug to the ground…) 

 

 

Generating the Heightmap ? 



Ankle-high Orthogonal Frustum 









Let’s see what it looks like at 
runtime! 

 
 



Update Loop 

For every active* snow surface 

1. Figure out if surface-affecting object is on the surface 

-We use a quad tree look-up rather than keeping an 
actor list for each surface 

2. Override materials on all parts 

- Simple white material 

3. Render actors  

4. Process/Accumulate with custom post-process chain 



Heightmap Accumulation & Render 

Stage 1 – Get results & small blur 

● 4-tap bilinear Poisson 

Stage 2 – Add to existing heightmap 

● During this stage, you can also subtract a 
small value to the heightmap to make snow 
gradually replenish (since it’s snowing)  

Stage 3 – Shading 



Stage 3 - Shading (1/) 

Snow surfaces have 2 material options 

1. Basic Snow Material 

o Active when surface is not being deformed 

o Shows new / clean / untouched snow, cheaper 

2. Deformable Snow Material 

o Two stages: non-deformed or fully flattened snow 

o Non-deformed part the same as Basic Snow Material 

o Fully flattened shows rooftop tiles / concrete. 

o Blends both stages using heightmap & Relief Mapping 

 



Stage 3 - Shading (2/) 

Non-deformed Snow 

Flattened Snow 



Stage 3 - Shading (3/) 

Blending Material Stages 
● For diffuse & spec, simple lerp 

o Also, tint diffuse with sky color in transition area to fake SSS 

● For normals, blend using Reoriented Normal Mapping 
[Barré-Brisebois & Hill 2012]  

o Normals are not colors.  

o You can’t lerp/overlay between directions! 

o Used in game to: 

● Blend the snow detail normal and the macro “wave” snow normal 

● Add detail normal maps everywhere 

 



Stage 3 - Shading (4/) 

float3 t = tex2D(BaseNormal, uv) * float3(2, 2, 2) + float3(-1, -1, 0);  
float3 u = tex2D(DetailNormal, uv) * float3(-2, -2, 2) + float3(1, 1, -1);  
float3 r = t * dot(t, u) / t.z – u; 

[Barré-Brisebois & Hill 2012]  



Linear Interpolation 



Overlay 



[Barré-Brisebois & Hill 2012]  

Reoriented Normal Mapping 



Add. Implementation Details (1/) 

Surface UVs align with ortho frustum 
● 0-1 range, simplifies heightmap-to-displacement 

Scaled world-space heightmap res. 
● Min(512, ¼ * (SurfaceX, SurfaceY)) 

● Tries to keep texels “square” 

● Doesn’t need to be high-res, looks better in lower 
resolutions 

● Must scale Relief Mapping parameters 



Add. Implementation Details (2/) 

Split render & tick of active surfaces 
● Snow surface where Batman stands has priority 

● Only render 2 surfaces/frame (tweakable but good 
enough, with distance-based priorities) 

Reuse memory from old heightmaps 
● Not active/visible (max distance from sphere bounds) 

● Un-streamed open-world zones 



DirectX 11 With Tessellation (1/) 

 Feature developed with our friends @ 
NVIDIA (Evgeny Makarov) 

Accurate displacement based on depth 
● Capture the height field like a z-buffer 

● Two channels:  
o Minimum height field  

o Projected displacement 

● Allows for additive capture & smoother results.  

● Also allows for deformable snow banks!  

 

 



Rooftop 

Minimum Height field 

Orthogonal Capture Frustum Projected Displacement 

Final Surface (displaced) 

DirectX 11 With Tessellation (2/) 



DirectX 11 With Tessellation (3/) 

Tessellated version adds detailed 
displacement calculated from the normal 
map, globally applied to the snow surface 

● Extra detail compared to the relief-mapped 
version 

● Takes the macro normal map to add 
additional “macro waves” 



Without Tessellation (No Macro Deformation) 



With Tessellation (Macro Deformation) 



DirectX 11 With Tessellation (4/) 

Runtime dicing of snow meshes 

Real geometry means: 

● Works with Dynamic Shadows 

o Character shadows now follows the surface and shift 
with the deformation 

o Self shadowing & self-shading 

● Works with dynamic ambient occlusion 

o AO fills-in the trails 





Performance & Memory 

Performance 

● Heightmaps update < 1.0ms GPU on PS3/360 

Memory 

● 2 MB (360 / PS3 / WiiU) 

o Since we’re using low resolution heightmaps 

o This is flexible, but sufficient for our needs since we 
allocate/deallocate as the player flies in the world 

● 2-4 MB (FP16 vs FP32 on PC) 



Caveats / Issues ? 

Relief-Mapped Approach 
● Deformation looks great, but will never be as thick as 

tessellation. Replace with Parallax Occlusion Mapping? 

● Derive parametric AO from the heightmap? 

Tessellated Approach 
● When artists were working on content creation, displacement 

wasn't taken into account (pre-pass actors, open edges being 
visible, etc...) 

● Some meshes couldn't use tessellation as there were parts of 
geometry right under the snow, not supposed to be visible 

 



Future Endeavours… 

Save the heightmaps and reload them? 

Use this technique for other cases, such 
as sand, mud, etc… 



Summary 

A fast and low-memory footprint 
technique to render deformable snow 
surfaces 

● Adds a really nice level of interaction between players 
and the world 

● Depics iconic & organic visuals of deformable snow 

A good tessellation case for your DX11 
game using minimal editing and art tweaks 
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NVIDIA Questions? 
colin.barrebrisebois@wbgames.com / @ZigguratVertigo 



http://www.wbgamesmontreal.com 

http://www.wbgamesmontreal.com/
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